Numerical solution of optimal control problems with explicit and implicit switches

In this article, we present a unified framework for the numerical solution of optimal control problems constrained by ordinary differential equations with both implicit and explicit switches. We present the problem class and qualify different types of implicitly switched systems. This classification significantly affects opportunities for solving such problems numerically. By using techniques from generalized … Read more

trlib: A vector-free implementation of the GLTR method for iterative solution of the trust region problem

We describe trlib, a library that implements a Variant of Gould’s Generalized Lanczos method (Gould et al. in SIAM J. Opt. 9(2), 504–525, 1999) for solving the trust region problem. Our implementation has several distinct features that set it apart from preexisting ones. We implement both conjugate gradient (CG) and Lanczos iterations for assembly of … Read more

Approximation Properties and Tight Bounds for Constrained Mixed-Integer Optimal Control

We extend recent work on mixed-integer nonlinear optimal control prob- lems (MIOCPs) to the case of integer control functions subject to constraints. Promi- nent examples of such systems include problems with restrictions on the number of switches permitted, or problems that minimize switch cost. We extend a theorem due to [Sager et al., Math. Prog. … Read more

An Active-Set Quadratic Programming Method Based On Sequential Hot-Starts

A new method for solving sequences of quadratic programs (QPs) is presented. For each new QP in the sequence, the method utilizes hot-starts that employ information computed by an active-set QP solver during the solution of the first QP. This avoids the computation and factorization of the full matrices for all but the first problem … Read more

Mixed-Integer Nonlinear Optimization

Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of handling … Read more

On Perspective Functions and Vanishing Constraints in Mixed-Integer Nonlinear Optimal Control

Logical implications appear in a number of important mixed-integer nonlinear optimal control problems (MIOCPs). Mathematical optimization offers a variety of different formulations that are equivalent for boolean variables, but result in different relaxations. In this article we give an overview over a variety of different modeling approaches, including outer versus inner convexification, generalized disjunctive programming, … Read more

Solving Mixed-Integer Nonlinear Programs by QP-Diving

We present a new tree-search algorithm for solving mixed-integer nonlinear programs (MINLPs). Rather than relying on computationally expensive nonlinear solves at every node of the branch-and-bound tree, our algorithm solves a quadratic approximation at every node. We show that the resulting algorithm retains global convergence properties for convex MINLPs, and we present numerical results on … Read more

TACO – A Toolkit for AMPL Control Optimization

We describe a set of extensions to the AMPL modeling language to conveniently model mixed-integer optimal control problems for ODE or DAE dynamic processes. These extensions are realized as AMPL user functions and suffixes and do not require intrusive changes to the AMPL language standard or implementation itself. We describe and provide TACO, a Toolkit … Read more

Efficient Direct Multiple Shooting for Nonlinear Model Predictive Control on Long Horizons

We address direct multiple shooting based algorithms for nonlinear model predictive control, with a focus on problems with long prediction horizons. We describe different efficient multiple shooting variants with a computational effort that is only linear in the horizon length. Proposed techniques comprise structure exploiting linear algebra on the one hand, and approximation of derivative … Read more

A parametric active set method for quadratic programs with vanishing constraints

Combinatorial and logic constraints arising in a number of challenging optimization applications can be formulated as vanishing constraints. Quadratic programs with vanishing constraints (QPVCs) then arise as subproblems during the numerical solution of such problems using algorithms of the Sequential Quadratic Programming type. QPVCs are nonconvex problems violating standard constraint qualifications. In this paper, we … Read more