A Graphical Global Optimization Framework for Parameter Estimation of Statistical Models with Nonconvex Regularization Functions

Optimization problems with norm-bounding constraints appear in various applications, from portfolio optimization to machine learning, feature selection, and beyond. A widely used variant of these problems relaxes the norm-bounding constraint through Lagrangian relaxation and moves it to the objective function as a form of penalty or regularization term. A challenging class of these models uses … Read more

A graphical framework for global optimization of mixed-integer nonlinear programs

While mixed-integer linear programming and convex programming solvers have advanced significantly over the past several decades, solution technologies for general mixed-integer nonlinear programs (MINLPs) have yet to reach the same level of maturity. Various problem structures across different application domains remain challenging to model and solve using modern global solvers, primarily due to the lack … Read more

Solving Unsplittable Network Flow Problems with Decision Diagrams

In unsplittable network flow problems, certain nodes must satisfy a combinatorial requirement that the incoming arc flows cannot be split or merged when routed through outgoing arcs. This so-called “no-split no-merge” requirement arises in unit train scheduling where train consists should remain intact at stations that lack necessary equipment and manpower to attach/detach them. Solving … Read more

Solving a Class of Cut-Generating Linear Programs via Machine Learning

Cut-generating linear programs (CGLPs) play a key role as a separation oracle to produce valid inequalities for the feasible region of mixed-integer programs. When incorporated inside branch-and-bound, the cutting planes obtained from CGLPs help to tighten relaxations and improve dual bounds. However, running the CGLPs at the nodes of the branch-and-bound tree is computationally cumbersome … Read more

On the Structure of Decision Diagram-Representable Mixed Integer Programs with Application to Unit Commitment

Over the past decade, decision diagrams (DDs) have been used to model and solve integer programming and combinatorial optimization problems. Despite successful performance of DDs in solving various discrete optimization problems, their extension to model mixed integer programs (MIPs) such as those appearing in energy applications has been lacking. More broadly, the question on which … Read more

Strong Relaxations for Continuous Nonlinear Programs Based on Decision Diagrams

Over the past decade, Decision Diagrams (DDs) have risen as a powerful modeling tool to solve discrete optimization problems. The extension of this emerging concept to continuous problems, however, has remained a challenge, posing a limitation on its applicability scope. In this paper, we introduce a novel framework that utilizes DDs to model continuous programs. … Read more

Achieving Consistency with Cutting Planes

Cutting planes accelerate branch-and-bound search primarily by cutting off fractional solutions of the linear programming (LP) relaxation, resulting in tighter bounds for pruning the search tree. Yet cutting planes can also reduce backtracking by excluding inconsistent partial assignments that occur in the course of branching. A partial assignment is inconsistent with a constraint set when … Read more

Consistency for 0-1 programming

Concepts of consistency have long played a key role in constraint programming but never developed in integer programming (IP). Consistency nonetheless plays a role in IP as well. For example, cutting planes can reduce backtracking by achieving various forms of consistency as well as by tightening the linear programming (LP) relaxation. We introduce a type … Read more

Outer Approximation for Integer Nonlinear Programs via Decision Diagrams

As an alternative to traditional integer programming (IP), decision diagrams (DDs) provide a new solution technology for discrete problems based on their combinatorial structure and dynamic programming representation. While the literature mainly focuses on the competitive aspects of DDs as a stand-alone solver, we investigate their complementary role by studying IP techniques that can be … Read more

Network Models with Unsplittable Node Flows with Application to Unit Train Scheduling

We study network models where flows cannot be split or merged when passing through certain nodes, i.e., for such nodes, each incoming arc flow must be matched to an outgoing arc flow of identical value. This requirement, which we call “no-split no-merge” (NSNM), appears in railroad applications where train compositions can only be modified at … Read more