Differerential Evolution methods based on local searches

In this paper we analyze the behavior of a quite standard Differential Evolution (DE) algorithm applied to the objective function transformed by means of local searches. First some surprising results are presented which concern the application of this method to standard test functions. Later we introduce an application to disk- and to sphere-packing problems, two … Read more

Global optimization of expensive black box problems with a known lower bound

In this paper we propose an algorithm for the global optimization of computationally expensive black–box functions. For this class of problems, no information, like e.g. the gradient, can be obtained and function evaluation is highly expensive. In many applications, however, a lower bound on the objective function is known; in this situation we derive a … Read more

On the relation between concavity cuts and the surrogate dual for convex maximization problems

In this note we establish a relation between two bounds for convex maximization problems, the one based on a concavity cut, and the surrogate dual bound. Both bounds have been known in the literature for a few decades but, to the authors’ knowledge, the relation between them has not been previously observed in the literature. … Read more

A concave optimization-based approach for sparse portfolio selection

This paper considers a portfolio selection problem in which portfolios with minimum number of active assets are sought. This problem is motivated by the need of inducing sparsity on the selected portfolio to reduce transaction costs, complexity of portfolio management, and instability of the solution. The resulting problem is a difficult combinatorial problem. We propose … Read more

On convex envelopes and underestimators for bivariate functions

In this paper we discuss convex underestimators for bivariate functions. We first present a method for deriving convex envelopes over the simplest two-dimensional polytopes, i.e., triangles. Next, we propose a technique to compute the value at some point of the convex envelope over a general two-dimensional polytope, together with a supporting hyperplane of the convex … Read more

Machine Learning for Global Optimization

In this paper we introduce the LeGO (Learning for Global Optimization) approach for global optimization in which machine learning is used to predict the outcome of a computationally expensive global optimization run, based upon a suitable training performed by standard runs of the same global optimization method. We propose to use a Support Vector Machine … Read more

Global Optimization for the Design of Space Trajectories

The problem of optimally designing a trajectory for a space mission is considered in this paper. Actual mission design is a complex, multi-disciplinary and multi-objective activity with relevant economic implications. In this paper we will consider some simplified models proposed by the European Space Agency as test problems for global optimization. We show that many … Read more

Solving the problem of packing equal and unequal circles in a circular container

In this paper we propose a Monotonic Basin Hopping approach and its population-based variant Population Basin Hopping to solve the problem of packing equal and unequal circles within a circular container with minimum radius. Extensive computational experiments have been performed both to analyze the problem at hand, and to choose in an appropriate way the … Read more

Concave programming for minimizing the zero-norm over polyhedral sets

Given a non empty polyhedral set, we consider the problem of finding a vector belonging to it and having the minimum number of nonzero components, i.e., a feasible vector with minimum zero-norm. This nonsmooth combinatorial optimization problem is NP-Hard and arises in various fields such as machine learning, pattern recognition, signal processing. We propose two … Read more

Dissimilarity Measures for Population-Based Global Optimization Algorithms

Very hard optimization problems, i.e., problems with a large number of variables and local minima, have been effectively attacked with algorithms which mix local searches with heuristic procedures in order to widely explore the search space. A Population Based Approach based on a Monotonic Basin Hopping optimization algorithm has turned out to be very effective … Read more