A Test Instance Generator for Multiobjective Mixed-integer Optimization

Application problems can often not be solved adequately by numerical algorithms as several difficulties might arise at the same time. When developing and improving algorithms which hopefully allow to handle those difficulties in the future, good test instances are required. These can then be used to detect the strengths and weaknesses of different algorithmic approaches. … Read more

Set-based Robust Optimization of Uncertain Multiobjective Problems via Epigraphical Reformulations

In this paper, we study a method for finding robust solutions to multiobjective optimization problems under uncertainty. We follow the set-based minmax approach for handling the uncertainties which leads to a certain set optimization problem with the strict upper type set relation. We introduce, under some assumptions, a reformulation using instead the strict lower type … Read more

Convexity and continuity of specific set-valued maps and their extremal value functions

In this paper, we study several classes of set-valued maps, which can be used in set-valued optimization and its applications, and their respective maximum and minimum value functions. The definitions of these maps are based on scalar-valued, vector-valued, and cone-valued maps. Moreover, we consider those extremal value functions which are obtained when optimizing linear functionals … Read more

Advancements in the computation of enclosures for multi-objective optimization problems

A central goal for multi-objective optimization problems is to compute their nondominated sets. In most cases these sets consist of infinitely many points and it is not a practical approach to compute them exactly. One solution to overcome this problem is to compute an enclosure, a special kind of coverage, of the nondominated set. One … Read more

A deterministic solver for multiobjective mixed-integer convex and nonconvex optimization

This paper proposes a general framework for solving multiobjective nonconvex optimization problems, i.e., optimization problems in which multiple objective functions have to be optimized simultaneously. Thereby, the nonconvexity might come from the objective or constraint functions, or from integrality conditions for some of the variables. In particular, multiobjective mixed-integer convex and nonconvex optimization problems are … Read more

A hybrid patch decomposition approach to compute an enclosure for multi-objective mixed-integer convex optimization problems

In multi-objective mixed-integer convex optimization multiple convex objective functions need to be optimized simultaneously while some of the variables are only allowed to take integer values. In this paper we present a new algorithm to compute an enclosure of the nondominated set of such optimization problems. More precisely, we decompose the multi-objective mixed-integer convex optimization … Read more

On implementation details and numerical experiments for the HyPaD algorithm to solve multi-objective mixed-integer convex optimization problems

In this paper we present insights on the implementation details of the hybrid patch decomposition algorithm (HyPaD) for convex multi-objective mixed-integer optimization problems. We discuss how to implement the SNIA procedure which is basically a black box algorithm in the original work by Eichfelder and Warnow. In addition, we present and discuss results for various … Read more

A Vectorization Scheme for Nonconvex Set Optimization Problems

In this paper, we study a solution approach for set optimization problems with respect to the lower set less relation. This approach can serve as a base for numerically solving set optimization problems by using established solvers from multiobjective optimization. Our strategy consists of deriving a parametric family of multiobjective optimization problems whose optimal solution … Read more

Limit sets in global multiobjective optimization

Inspired by the recently introduced branch-and-bound method for continuous multiobjective optimization problems from G. Eichfelder, P. Kirst, L. Meng, O. Stein, A general branch-and-bound framework for continuous global multiobjective optimization, Journal of Global Optimization, 80 (2021) 195-227, we study for a general class of branch-and-bound methods in which sense the generated terminal enclosure and the … Read more

Solving set-valued optimization problems using a multiobjective approach

Set-valued optimization using the set approach is a research topic of high interest due to its practical relevance and numerous interdependencies to other fields of optimization. However, it is a very difficult task to solve these optimzation problems even for specific cases. In this paper we study set-valued optimization problems and develop a multiobjective optimization … Read more