Performance of First- and Second-Order Methods for L1-Regularized Least Squares Problems

We study the performance of first- and second-order optimization methods for l1-regularized sparse least-squares problems as the conditioning and the dimensions of the problem increase up to one trillion. A rigorously defined generator is presented which allows control of the dimensions, the conditioning and the sparsity of the problem. The generator has very low memory … Read more

A Preconditioner for a Primal-Dual Newton Conjugate Gradients Method for Compressed Sensing Problems

In this paper we are concerned with the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. We extend a primal-dual Newton Conjugate Gradients (pdNCG) method for CS problems. We provide an inexpensive and provably effective preconditioning technique for linear systems using pdNCG. Numerical results … Read more

A Second-Order Method for Compressed Sensing Problems with Coherent and Redundant Dictionaries

In this paper we are interested in the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. CS problems of this type are convex with non-smooth and non-separable regularization term, therefore a specialized solver is required. We propose a primal-dual Newton Conjugate Gradients (pdNCG) method. … Read more

Large-scale optimization with the primal-dual column generation method

The primal-dual column generation method (PDCGM) is a general-purpose column generation technique that relies on the primal-dual interior point method to solve the restricted master problems. The use of this interior point method variant allows to obtain suboptimal and well-centered dual solutions which naturally stabilizes the column generation. A reduction in the number of calls … Read more

Inexact Coordinate Descent: Complexity and Preconditioning

In this paper we consider the problem of minimizing a convex function using a randomized block coordinate descent method. One of the key steps at each iteration of the algorithm is determining the update to a block of variables. Existing algorithms assume that in order to compute the update, a particular subproblem is solved exactly. … Read more

A Second-Order Method for Strongly Convex L1-Regularization Problems

In this paper a robust second-order method is developed for the solution of strongly convex l1-regularized problems. The main aim is to make the proposed method as inexpensive as possible, while even difficult problems can be efficiently solved. The proposed method is a primal-dual Newton Conjugate Gradients (pdNCG) method. Convergence properties of pdNCG are studied … Read more

Using the primal-dual interior point algorithm within the branch-price-and-cut method

Branch-price-and-cut has proven to be a powerful method for solving integer programming problems. It combines decomposition techniques with the generation of both columns and valid inequalities and relies on strong bounds to guide the search in the branch-and-bound tree. In this paper, we present how to improve the performance of a branch-price-and-cut method by using … Read more

Convergence Analysis of an Inexact Feasible Interior Point Method for Convex Quadratic Programming

In this paper we will discuss two variants of an inexact feasible interior point algorithm for convex quadratic programming. We will consider two different neighbourhoods: a (small) one induced by the use of the Euclidean norm which yields a short-step algorithm and a symmetric one induced by the use of the infinity norm which yields … Read more

Matrix-free Interior Point Method for Compressed Sensing Problems

We consider a class of optimization problems for sparse signal reconstruction which arise in the field of Compressed Sensing (CS). A plethora of approaches and solvers exist for such problems, for example GPSR, FPC AS, SPGL1, NestA, l1 ls, PDCO to mention a few. CS applications lead to very well conditioned optimization problems and therefore … Read more

A new warmstarting strategy for the primal-dual column generation method

This paper presents a new warmstarting technique in the context of a primal-dual column generation method applied to solve a particular class of combinatorial optimization problems. The technique relies on calculating an initial point and on solving auxiliary linear optimization problems to determine the step direction needed to fully restore primal and dual feasibilities after … Read more