Variance Reduction and Low Sample Complexity in Stochastic Optimization via Proximal Point Method

This paper proposes a stochastic proximal point method to solve a stochastic convex composite optimization problem. High probability results in stochastic optimization typically hinge on restrictive assumptions on the stochastic gradient noise, for example, sub-Gaussian distributions. Assuming only weak conditions such as bounded variance of the stochastic gradient, this paper establishes a low sample complexity … Read more

Proximal bundle methods for hybrid weakly convex composite optimization problems

This paper establishes the iteration-complexity of proximal bundle methods for solving hybrid (i.e., a blend of smooth and nonsmooth) weakly convex composite optimization (HWC-CO) problems. This is done in a unified manner by considering a proximal bundle framework (PBF) based on a generic bundle update scheme which includes various well-known bundle update schemes. In contrast … Read more

A single cut proximal bundle method for stochastic convex composite optimization

This paper considers optimization problems where the objective is the sum of a function given by an expectation and a closed convex composite function, and proposes stochastic composite proximal bundle (SCPB) methods for solving it. Complexity guarantees are established for them without requiring knowledge of parameters associated with the problem instance. Moreover, it is shown … Read more

A unified analysis of a class of proximal bundle methods for solving hybrid convex composite optimization problems

This paper presents a proximal bundle (PB) framework based on a generic bundle update scheme for solving the hybrid convex composite optimization (HCCO) problem and establishes a common iteration-complexity bound for any variant belonging to it. As a consequence, iteration-complexity bounds for three PB variants based on different bundle update schemes are obtained in the … Read more

Average Curvature FISTA for Nonconvex Smooth Composite Optimization Problems

A previous authors’ paper introduces an accelerated composite gradient (ACG) variant, namely AC-ACG, for solving nonconvex smooth composite optimization (N-SCO) problems. In contrast to other ACG variants, AC-ACG estimates the local upper curvature of the N-SCO problem by using the average of the observed upper-Lipschitz curvatures obtained during the previous iterations, and uses this estimation … Read more

A proximal bundle variant with optimal iteration-complexity for a large range of prox stepsizes

This paper presents a proximal bundle variant, namely, the relaxed proximal bundle (RPB) method, for solving convex nonsmooth composite optimization problems. Like other proximal bundle variants, RPB solves a sequence of prox bundle subproblems whose objective functions are regularized composite cutting-plane models. Moreover, RPB uses a novel condition to decide whether to perform a serious … Read more

An Average Curvature Accelerated Composite Gradient Method for Nonconvex Smooth Composite Optimization Problems

This paper presents an accelerated composite gradient (ACG) variant, referred to as the AC-ACG method, for solving nonconvex smooth composite minimization problems. As opposed to well-known ACG variants that are either based on a known Lipschitz gradient constant or a sequence of maximum observed curvatures, the current one is based on a sequence of average … Read more

A FISTA-type accelerated gradient algorithm for solving smooth nonconvex composite optimization problems

In this paper, we describe and establish iteration-complexity of two accelerated composite gradient (ACG) variants to solve a smooth nonconvex composite optimization problem whose objective function is the sum of a nonconvex differentiable function f with a Lipschitz continuous gradient and a simple nonsmooth closed convex function h. When f is convex, the first ACG … Read more

A Doubly Accelerated Inexact Proximal Point Method for Nonconvex Composite Optimization Problems

This paper describes and establishes the iteration-complexity of a doubly accelerated inexact proximal point (D-AIPP) method for solving the nonconvex composite minimization problem whose objective function is of the form f+h where f is a (possibly nonconvex) differentiable function whose gradient is Lipschitz continuous and h is a closed convex function with bounded domain. D-AIPP … Read more