FINITE ELEMENT MODEL UPDATING FOR STRUCTURAL APPLICATIONS

A novel method for performing model updating on finite element models is presented. The approach is particularly tailored to modal analyses of buildings, by which the lowest frequencies, obtained by using sensors and system identification approaches, need to be matched to the numerical ones predicted by the model. This is done by optimizing some unknown … Read more

A note on using performance and data profiles for training algorithms

It is shown how to use the performance and data profile benchmarking tools to improve algorithms’ performance. An illustration for the BFO derivative-free optimizer suggests that the obtained gains are potentially significant. Citation ACM Transactions on Mathematical Software, 45:2 (2019), Article 20. Article Download View A note on using performance and data profiles for training … Read more

Quasi-Newton methods for constrained nonlinear systems: complexity analysis and application

We address the solution of convex constrained nonlinear systems by new linesearch Quasi-Newton methods. These methods are based on a proper use of the projection map onto the constraint set and on a derivative-free and nonmonotone linesearch strategy. The convergence properties of the proposed methods are presented along with a worst-case iteration complexity bound. Several … Read more

Preconditioning PDE-constrained optimization with L^1-sparsity and control constraints

PDE-constrained optimization aims at finding optimal setups for partial differential equations so that relevant quantities are minimized. Including sparsity promoting terms in the formulation of such problems results in more practically relevant computed controls but adds more challenges to the numerical solution of these problems. The needed L^1-terms as well as additional inclusion of box … Read more

Approximate norm descent methods for constrained nonlinear systems

We address the solution of convex-constrained nonlinear systems of equations where the Jacobian matrix is unavailable or its computation/storage is burdensome. In order to efficiently solve such problems, we propose a new class of algorithms which are “derivative-free” both in the computation of the search direction and in the selection of the steplength. Search directions … Read more

An inexact dual logarithmic barrier method for solving sparse semidefinite programs

A dual logarithmic barrier method for solving large, sparse semidefinite programs is proposed in this paper. The method avoids any explicit use of the primal variable X and therefore is well-suited to problems with a sparse dual matrix S. It relies on inexact Newton steps in dual space which are computed by the conjugate gradient … Read more

The Riemannian Barzilai-Borwein method with nonmonotone line search and the matrix geometric mean computation

The Barzilai-Borwein method, an effective gradient descent method with clever choice of the step-length, is adapted from nonlinear optimization to Riemannian manifold optimization. More generally, global convergence of a nonmonotone line-search strategy for Riemannian optimization algorithms is proved under some standard assumptions. By a set of numerical tests, the Riemannian Barzilai-Borwein method with nonmonotone line-search … Read more

BFO, a trainable derivative-free Brute Force Optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables

A direct-search derivative-free Matlab optimizer for bound-constrained problems is described, whose remarkable features are its ability to handle a mix of continuous and discrete variables, a versatile interface as well as a novel self-training option. Its performance compares favourably with that of NOMAD, a state-of-the art package. It is also applicable to multilevel equilibrium- or … Read more

Preconditioning of Active-Set Newton Methods for PDE-constrained Optimal Control Problems

We address the problem of preconditioning a sequence of saddle point linear systems arising in the solution of PDE-constrained optimal control problems via active-set Newton methods, with control and (regularized) state constraints. We present two new preconditioners based on a full block matrix factorization of the Schur complement of the Jacobian matrices, where the active-set … Read more

Preconditioning issues in the numerical solution of nonlinear equations and nonlinear least squares

Second order methods for optimization call for the solution of sequences of linear systems. In this survey we will discuss several issues related to the preconditioning of such sequences. Covered topics include both techniques for building updates of factorized preconditioners and quasi-Newton approaches. Sequences of unsymmetric linear systems arising in Newton- Krylov methods will be … Read more