Spectral Operators of Matrices

The class of matrix optimization problems (MOPs) has been recognized in recent years to be a powerful tool by researchers far beyond the optimization community to model many important applications involving structured low rank matrices. This trend can be credited to some extent to the exciting developments in the emerging field of compressed sensing. The … Read more

Lagrangian-Conic Relaxations, Part II: Applications to Polynomial Optimization Problems

We present the moment cone (MC) relaxation and a hierarchy of sparse Lagrangian-SDP relaxations of polynomial optimization problems (POPs) using the unified framework established in Part I. The MC relaxation is derived for a POP of minimizing a polynomial subject to a nonconvex cone constraint and polynomial equality constraints. It is an extension of the … Read more

Lagrangian-Conic Relaxations, Part I: A Unified Framework and Its Applications to Quadratic Optimization Problems

In Part I of a series of study on Lagrangian-conic relaxations, we introduce a unified framework for conic and Lagrangian-conic relaxations of quadratic optimization problems (QOPs) and polynomial optimization problems (POPs). The framework is constructed with a linear conic optimization problem (COP) in a finite dimensional vector space endowed with an inner product, where the … Read more

A Lagrangian-DNN Relaxation: a Fast Method for Computing Tight Lower Bounds for a Class of Quadratic Optimization Problems

We propose an efficient computational method for linearly constrained quadratic optimization problems (QOPs) with complementarity constraints based on their Lagrangian and doubly nonnegative (DNN) relaxation and first-order algorithms. The simplified Lagrangian-CPP relaxation of such QOPs proposed by Arima, Kim, and Kojima in 2012 takes one of the simplest forms, an unconstrained conic linear optimization problem … Read more

A Penalized Quadratic Convex Reformulation Method for Random Quadratic Unconstrained Binary Optimization

The Quadratic Convex Reformulation (QCR) method is used to solve quadratic unconstrained binary optimization problems. In this method, the semidefinite relaxation is used to reformulate it to a convex binary quadratic program which is solved using mixed integer quadratic programming solvers. We extend this method to random quadratic unconstrained binary optimization problems. We develop a … Read more

A Probabilistic Model for Minmax Regret in Combinatorial Optimization

In this paper, we propose a probabilistic model for minimizing the anticipated regret in combinatorial optimization problems with distributional uncertainty in the objective coefficients. The interval uncertainty representation of data is supplemented with information on the marginal distributions. As a decision criterion, we minimize the worst-case conditional value-at-risk of regret. The proposed model includes the … Read more

An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP

The accelerated proximal gradient (APG) method, first proposed by Nesterov, and later refined by Beck and Teboulle, and studied in a unifying manner by Tseng has proven to be highly efficient in solving some classes of large scale structured convex optimization (possibly nonsmooth) problems, including nuclear norm minimization problems in matrix completion and $l_1$ minimization … Read more

A proximal point algorithm for sequential feature extraction applications

We propose a proximal point algorithm to solve LAROS problem, that is the problem of finding a “large approximately rank-one submatrix”. This LAROS problem is used to sequentially extract features in data. We also develop a new stopping criterion for the proximal point algorithm, which is based on the duality conditions of \eps-optimal solutions of … Read more

On the Moreau-Yosida regularization of the vector k-norm related functions

In this paper, we conduct a thorough study on the first and second order properties of the Moreau-Yosida regularization of the vector $k$-norm function, the indicator function of its epigraph, and the indicator function of the vector $k$-norm ball. We start with settling the vector $k$-norm case via applying the existing breakpoint searching algorithms to … Read more

An Introduction to a Class of Matrix Cone Programming

In this paper, we define a class of linear conic programming (which we call matrix cone programming or MCP) involving the epigraphs of five commonly used matrix norms and the well studied symmetric cone. MCP has recently found many important applications, for example, in nuclear norm relaxations of affine rank minimization problems. In order to … Read more