An Improved Unconstrained Approach for Bilevel Optimization

In this paper, we focus on the nonconvex-strongly-convex bilevel optimization problem (BLO). In this BLO, the objective function of the upper-level problem is nonconvex and possibly nonsmooth, and the lower-level problem is smooth and strongly convex with respect to the underlying variable $y$. We show that the feasible region of BLO is a Riemannian manifold. … Read more

A Constraint Dissolving Approach for Nonsmooth Optimization over the Stiefel Manifold

This paper focus on the minimization of a possibly nonsmooth objective function over the Stiefel manifold. The existing approaches either lack efficiency or can only tackle prox-friendly objective functions. We propose a constraint dissolving function named NCDF and show that it has the same first-order stationary points and local minimizers as the original problem in … Read more

Escaping Spurious Local Minima of Low-Rank Matrix Factorization Through Convex Lifting

This work proposes a rapid global solver for nonconvex low-rank matrix factorization (MF) problems that we name MF-Global. Through convex lifting steps, our method efficiently escapes saddle points and spurious local minima ubiquitous in noisy real-world data, and is guaranteed to always converge to the global optima. Moreover, the proposed approach adaptively adjusts the rank … Read more

Constraint Dissolving Approaches for Riemannian Optimization

In this paper, we propose a class of constraint dissolving approaches for optimization problems over closed Riemannian manifolds. In these proposed approaches, solving a Riemannian optimization problem is transferred into the unconstrained minimization of a constraint dissolving function named CDF. Different from existing exact penalty functions, the exact gradient and Hessian of CDF are easy … Read more

MatQapNB User Guide: A branch-and-bound program for QAPs in Matlab with the Newton-Bracketing method

MatQapNB is a MATLAB toolbox that implements a parallel branch-and-bound method using NewtBracket (the Newton bracketing method [4]) for its lower bounding procedure. It can solve small to medium scale Quadratic Assignment Problem (QAP) instances with dimension up to 30. MatQapNB was used in the numerical experiments on QAPs in the recent article “Solving challenging … Read more

Solving Challenging Large Scale QAPs

We report our progress on the project for solving larger scale quadratic assignment problems (QAPs). Our main approach to solve large scale NP-hard combinatorial optimization problems such as QAPs is a parallel branch-and-bound method eciently implemented on a powerful computer system using the Ubiquity Generator (UG) framework that can utilize more than 100,000 cores. Lower … Read more

User manual of NewtBracket: “A Newton-Bracketing method for a simple conic optimization problem” with applications to QOPs in binary variables

We describe the Matlab package NewtBracket for solving a simple conic optimization problem that minimizes a linear objective function subject to a single linear equality constraint and a convex cone constraint. The problem is converted into the problem of finding the largest zero $y^*$ of a continuously differentiable (except at $y^*$) convex function $g : … Read more

A Newton-bracketing method for a simple conic optimization problem

For the Lagrangian-DNN relaxation of quadratic optimization problems (QOPs), we propose a Newton-bracketing method to improve the performance of the bisection-projection method implemented in BBCPOP [to appear in ACM Tran. Softw., 2019]. The relaxation problem is converted into the problem of finding the largest zero $y^*$ of a continuously differentiable (except at $y^*$) convex function … Read more

Doubly nonnegative relaxations are equivalent to completely positive reformulations of quadratic optimization problems with block-clique graph structures

We study the equivalence among a nonconvex QOP, its CPP and DNN relaxations under the assumption that the aggregated and correlative sparsity of the data matrices of the CPP relaxation is represented by a block-clique graph $G$. By exploiting the correlative sparsity, we decompose the CPP relaxation problem into a clique-tree structured family of smaller … Read more

A Geometrical Analysis of a Class of Nonconvex Conic Programs for Convex Conic Reformulations of Quadratic and Polynomial Optimization Problems

We present a geometrical analysis on the completely positive programming reformulation of quadratic optimization problems and its extension to polynomial optimization problems with a class of geometrically defined nonconvex conic programs and their covexification. The class of nonconvex conic programs is described with a linear objective function in a linear space $V$, and the constraint … Read more