Prediction Range Estimation from Noisy Raman Spectra

Inferences need to be drawn in biological systems using experimental multivariate data. The number of samples collected in many such experiments is small, and the data is noisy. We present and study the performance of a robust optimization (RO) model for such situations. We adapt this model to generate a minimum and a maximum estimation … Read more

Sample Average Approximation for Stochastic Dominance Constrained Programs

In this paper we study optimization problems with second-order stochastic dominance constraints. This class of problems has been receiving increasing attention in the literature as it allows for the modeling of optimization problems where a risk-averse decision maker wants to ensure that the solution produced by the model dominates certain benchmarks. Here we deal with … Read more

A Cutting Surface Method for Uncertain Linear Programs with Polyhedral Stochastic Dominance Constraints

In this paper we study linear optimization problems with multi-dimensional linear positive second-order stochastic dominance constraints. By using the polyhedral properties of the second- order linear dominance condition we present a cutting-surface algorithm, and show its finite convergence. The cut generation problem is a difference of convex functions (DC) optimization problem. We exploit the polyhedral … Read more

Convergence Analysis of a Weighted Barrier Decomposition Algorithm for Two Stage Stochastic Programming

Mehrotra and Ozevin computationally found that a weighted primal barrier decomposition algorithm significantly outperforms the barrier decomposition proposed and analyzed in Zhao, and Mehrotra and Ozevin. This paper provides a theoretical foundation for the weighted barrier decomposition algorithm (WBDA). Although the worst case analysis of the WBDA achieves a first-stage iteration complexity bound that is … Read more

Self-concordant Tree and Decomposition Based Interior Point Methods for Stochastic Convex Optimization Problem

We consider barrier problems associated with two and multistage stochastic convex optimization problems. We show that the barrier recourse functions at any stage form a self-concordant family with respect to the barrier parameter. We also show that the complexity value of the first stage problem increases additively with the number of stages and scenarios. We … Read more

On the Implementation of Interior Point Decomposition Algorithms for Two-Stage Stochastic Conic

In this paper we develop a practical primal interior decomposition algorithm for two-stage stochastic programming problems. The framework of this algorithm is similar to the framework in Mehrotra and \”{Ozevin} \cite{MO04a,MO04b} and Zhao \cite{GZ01}, however their algorithm is altered in a simple yet fundamental way to achieve practical performance. In particular, this new algorithm weighs … Read more

Two-Stage Stochastic Semidefinite Programming and Decomposition Based Interior Point Methods

We introduce two-stage stochastic semidefinite programs with recourse and present a Benders decomposition based linearly convergent interior point algorithms to solve them. This extends the results of Zhao, who showed that the logarithmic barrier associated with the recourse function of two-stage stochastic linear programs with recourse behaves as a strongly self-concordant barrier on the first … Read more

On generalized branching methods for mixed integer programming

In this paper we present a restructuring of the computations in Lenstra’s methods for solving mixed integer linear programs. We show that the problem of finding a good branching hyperplane can be formulated on an adjoint lattice of the Kernel lattice of the equality constraints without requiring any dimension reduction. As a consequence the short … Read more

Analysis of a Path Following Method for Nonsmooth Convex Programs

Recently Gilbert, Gonzaga and Karas [2001] constructed examples of ill-behaved central paths for convex programs. In this paper we show that under mild conditions the central path has sufficient smoothness to allow construction of a path-following interior point algorithm for non-differentiable convex programs. We show that starting from a point near the center of the … Read more

Generating Convex Polynomial Inequalities for Mixed 0-1 Programs

We develop a method for generating valid convex polynomial inequalities for mixed 0-1 convex programs. We also show how these inequalities can be generated in the linear case by defining cut generation problems using a projection cone. The basic results for quadratic inequalities are extended to generate convex polynomial inequalities. Article Download View Generating Convex … Read more