Shortest Path Network Interdiction with Asymmetric Uncertainty

This paper considers an extension of the shortest path network interdiction problem that incorporates robustness to account for parameter uncertainty. The shortest path interdiction problem is a game of two players with conflicting agendas and capabilities: an evader, who traverses the arcs of a network from a source node to a sink node using the … Read more

Increasing Driver Flexibility through Personalized Menus and Incentives in Ridesharing and Crowdsourced Delivery Platforms

Allowing drivers to choose which requests to fulfill provides drivers with much-needed autonomy in ridesharing and crowdsourced delivery platforms. While stochastic, a driver’s acceptance of requests in their menu is influenced by the platform’s offered compensation. Therefore, in this work, we create and solve an optimization model to determine personalized menus and incentives to offer … Read more

Optimizing Driver Menus Under Stochastic Selection Behavior for Ridesharing and Crowdsourced Delivery

Peer-to-peer logistics platforms coordinate independent drivers to fulfill requests for last mile delivery and ridesharing. To balance demand-side performance with driver autonomy, a new methodology is created to provide drivers with a small but personalized menu of requests to choose from. This creates a Stackelberg game, in which the platform leads by deciding what menu … Read more

An Enhanced Logical Benders Approach for Linear Programs with Complementarity

This work extends the ones of Hu et al. (2008) and Bai et al. (2013) of a logical Benders approach for globally solving Linear Programs with Complementarity Constraints. By interpreting the logical Benders method as a reversed branch-and-bound method, where the whole exploration procedure starts from the leaf nodes in an enumeration tree, we provide … Read more

Optimizing the Recovery of Disrupted Multi-Echelon Assembly Supply Chain Networks

We consider optimization problems related to the scheduling of multi-echelon assembly supply chain (MEASC) networks that have applications in the recovery from large-scale disruptive events. Each manufacturer within this network assembles a component from a series of sub-components received from other manufacturers. We develop scheduling decision rules that are applied locally at each manufacturer and … Read more

A Penalty Method for Rank Minimization Problems in Symmetric Matrices

The problem of minimizing the rank of a symmetric positive semidefinite matrix subject to constraints can be cast equivalently as a semidefinite program with complementarity constraints (SDCMPCC). The formulation requires two positive semidefinite matrices to be complementary. We investigate calmness of locally optimal solutions to the SDCMPCC formulation and hence show that any locally optimal … Read more

Solving Linear Programs with Complementarity Constraints using Branch-and-Cut

A linear program with linear complementarity constraints (LPCC) requires the minimization of a linear objective over a set of linear constraints together with additional linear complementarity constraints. This class has emerged as a modeling paradigm for a broad collection of problems, including bilevel programs, Stackelberg games, inverse quadratic programs, and problems involving equilibrium constraints. The … Read more

On QPCCs, QCQPs and Completely Positive Programs

This paper studies several classes of nonconvex optimization problems defined over convex cones, establishing connections between them and demonstrating that they can be equivalently formulated as convex completely positive programs. The problems being studied include: a quadratically constrained quadratic program (QCQP), a quadratic program with complementarity constraints (QPCC), and rank constrained semidefinite programs. Our results … Read more

Complementarity Formulations of l0-norm Optimization Problems

In a number of application areas, it is desirable to obtain sparse solutions. Minimizing the number of nonzeroes of the solution (its l0-norm) is a difficult nonconvex optimization problem, and is often approximated by the convex problem of minimizing the l1-norm. In contrast, we consider exact formulations as mathematical programs with complementarity constraints and their … Read more

Properties of a Cutting Plane Method for Semidefinite Programming

We analyze the properties of an interior point cutting plane algorithm that is based on a semi-infinite linear formulation of the dual semidefinite program. The cutting plane algorithm approximately solves a linear relaxation of the dual semidefinite program in every iteration and relies on a separation oracle that returns linear cutting planes. We show that … Read more