On the Complexity of Finding Shortest Variable Disjunction Branch-and-Bound Proofs

We investigate the complexity of finding small branch-and-bound trees using variable disjunctions. We first show that it is not possible to approximate the size of a smallest branch-and-bound tree within a factor of 2^(1/5) in time 2^(\delta n) with \delta < 1/5, unless the strong exponential time hypothesis fails. Similarly, for any \varepsilon > 0, … Read more

The SCIP Optimization Suite 8.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 8.0 of the SCIP Optimization Suite. Major updates in SCIP include improvements in symmetry handling and decomposition algorithms, new cutting planes, a new plugin type … Read more

Schreier-Sims Cuts meet Stable Set: Preserving Problem Structure when Handling Symmetries

Symmetry handling inequalities (SHIs) are a popular tool to handle symmetries in integer programming. Despite their successful application in practice, only little is known about the interaction of SHIs with optimization problems. In this article, we focus on SST cuts, an attractive class of SHIs, and investigate their computational and polyhedral consequences for optimization problems. … Read more

Presolving for Mixed-Integer Semidefinite Optimization

This paper provides a discussion and evaluation of presolving methods for mixed-integer semidefinite programs. We generalize methods from the mixed-integer linear case and introduce new methods that depend on the semidefinite condition. The considered methods include adding linear constraints, bounds relying on 2 × 2 minors of the semidefinite constraints, bound tightening based on solving … Read more

A Generic Optimization Framework for Resilient Systems

This paper addresses the optimal design of resilient systems, in which components can fail. The system can react to failures and its behavior is described by general mixed integer nonlinear programs, which allows for applications to many (technical) systems. This then leads to a three-level optimization problem. The upper level designs the system minimizing a … Read more

Combinatorial Acyclicity Models for Potential-based Flows

Potential-based flows constitute a basic model to represent physical behavior in networks. Under natural assumptions, the flow in such networks must be acyclic. The goal of this paper is to exploit this property for the solution of corresponding optimization problems. To this end, we introduce several combinatorial models for acyclic flows, based on binary variables … Read more

Estimating the Size of Branch-and-Bound Trees

This paper investigates the estimation of the size of Branch-and-Bound (B&B) trees for solving mixed-integer programs. We first prove that the size of the B&B tree cannot be approximated within a factor of~2 for general binary programs, unless P equals NP. Second, we review measures of the progress of the B&B search, such as the … Read more

The SCIP Optimization Suite 7.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies … Read more

Exploiting Partial Convexity of Pump Characteristics in Water Network Design

The design of water networks consists of selecting pipe connections and pumps to ensure a given water demand to minimize investment and operating costs. Of particular importance is the modeling of variable speed pumps, which are usually represented by degree two and three polynomials approximating the characteristic diagrams. In total, this yields complex mixed-integer (non-convex) … Read more

Integrality of Linearizations of Polynomials over Binary Variables using Additional Monomials

Polynomial optimization problems over binary variables can be expressed as integer programs using a linearization with extra monomials in addition to those arising in the given polynomial. We characterize when such a linearization yields an integral relaxation polytope, generalizing work by Del Pia and Khajavirad (SIAM Journal on Optimization, 2018) and Buchheim, Crama and Rodríguez-Heck … Read more