Learning Optimal and Fair Policies for Online Allocation of Scarce Societal Resources from Data Collected in Deployment

We study the problem of allocating scarce societal resources of different types (e.g., permanent housing, deceased donor kidneys for transplantation, ventilators) to heterogeneous allocatees on a waitlist (e.g., people experiencing homelessness, individuals suffering from end-stage renal disease, Covid-19 patients) based on their observed covariates. We leverage administrative data collected in deployment to design an online … Read more

Learning Optimal Classification Trees Robust to Distribution Shifts

We consider the problem of learning classification trees that are robust to distribution shifts between training and testing/deployment data. This problem arises frequently in high stakes settings such as public health and social work where data is often collected using self-reported surveys which are highly sensitive to e.g., the framing of the questions, the time … Read more

ODTlearn: A Package for Learning Optimal Decision Trees for Prediction and Prescription

ODTLearn is an open-source Python package that provides methods for learning optimal decision trees for high-stakes predictive and prescriptive tasks based on the mixed-integer optimization (MIO) framework proposed in Aghaei et al. (2019) and several of its extensions. The current version of the package provides implementations for learning optimal classification trees, optimal fair classification trees, … Read more

Learning Optimal Prescriptive Trees from Observational Data

We consider the problem of learning an optimal prescriptive tree (i.e., an interpretable treatment assignment policy in the form of a binary tree) of moderate depth, from observational data. This problem arises in numerous socially important domains such as public health and personalized medicine, where interpretable and data-driven interventions are sought based on data gathered … Read more

Strong Optimal Classification Trees

Decision trees are among the most popular machine learning models and are used routinely in applications ranging from revenue management and medicine to bioinformatics. In this paper, we consider the problem of learning optimal binary classification trees with univariate splits. Literature on the topic has burgeoned in recent years, motivated both by the empirical suboptimality … Read more

Cost-Sharing Mechanism Design for Ride-Sharing

In this paper, we focus on the cost-sharing problem for ride-sharing that determines how to allocate the total ride cost between the driver and the passengers. We identify the properties that a desirable cost-sharing mechanism should have and develop a general framework which can be used to create specific cost-sharing mechanisms. We propose specific mechanisms … Read more

ROC++: Robust Optimization in C++

Over the last two decades, robust optimization has emerged as a popular means to address decision-making problems affected by uncertainty. This includes single- and multi-stage problems involving real-valued and/or binary decisions, and affected by exogenous (decision-independent) and/or endogenous (decision-dependent) uncertain parameters. Robust optimization techniques rely on duality theory potentially augmented with approximations to transform a … Read more

Robust Active Preference Elicitation

We study the problem of strategically eliciting the preferences of a decision-maker through a moderate number of pairwise comparison queries with the goal of making them a high quality recommendation for a specific decision-making problem. We are particularly motivated by applications in high stakes domains, such as when choosing a policy for allocating scarce resources … Read more

Learning Optimal Classification Trees: Strong Max-Flow Formulations

We consider the problem of learning optimal binary classification trees. Literature on the topic has burgeoned in recent years, motivated both by the empirical suboptimality of heuristic approaches and the tremendous improvements in mixed-integer programming (MIP) technology. Yet, existing approaches from the literature do not leverage the power of MIP to its full extent. Indeed, … Read more

Robust Optimization with Decision-Dependent Information Discovery

Robust optimization (RO) is a popular paradigm for modeling and solving two- and multi-stage decision-making problems affected by uncertainty. In many real-world applications, such as R&D project selection, production planning, or preference elicitation for product or policy recommendations, the time of information discovery is decision-dependent and the uncertain parameters only become observable after an often costly … Read more