On polynomial time solvability of combinatorial Markov random fields

The problem of inferring Markov random fields (MRFs) with a sparsity or robustness prior can be naturally modeled as a mixed-integer program. This motivates us to study a general class of convex submodular optimization problems with indicator variables, which we show to be polynomially solvable in this paper. The key insight is that, possibly after … Read more

Some Strongly Polynomially Solvable Convex Quadratic Programs with Bounded Variables

This paper begins with a class of convex quadratic programs (QPs) with bounded variables solvable by the parametric principal pivoting algorithm with $\mbox{O}(n^3)$ strongly polynomial complexity, where $n$ is the number of variables of the problem. Extension of the Hessian class is also discussed. Our research is motivated by a recent reference [7] wherein the … Read more

Compact extended formulations for low-rank functions with indicator variables

We study the mixed-integer epigraph of a low-rank convex function with non-convex indicator constraints, which are often used to impose logical constraints on the support of the solutions. Extended formulations describing the convex hull of such sets can easily be constructed via disjunctive programming, although a direct application of this method often yields prohibitively large … Read more

Comparing Solution Paths of Sparse Quadratic Minimization with a Stieltjes Matrix

This paper studies several solution paths of sparse quadratic minimization problems as a function of the weighing parameter of the bi-objective of estimation loss versus solution sparsity. Three such paths are considered: the “L0-path” where the discontinuous L0-function provides the exact sparsity count; the “L1-path” where the L1-function provides a convex surrogate of sparsity count; … Read more

Single-neuron convexifications for binarized neural networks

Binarized neural networks are an important class of neural network in deep learning due to their computational efficiency. This paper contributes towards a better understanding of the structure of binarized neural networks, specifically, ideal convex representations of the activation functions used. We describe the convex hull of the graph of the signum activation function associated … Read more

2×2-convexifications for convex quadratic optimization with indicator variables

In this paper, we study the convex quadratic optimization problem with indicator variables. For the bivariate case, we describe the convex hull of the epigraph in the original space of variables, and also give a conic quadratic extended formulation. Then, using the convex hull description for the bivariate case as a building block, we derive … Read more

Sparse and Smooth Signal Estimation: Convexification of L0 Formulations

Signal estimation problems with smoothness and sparsity priors can be naturally modeled as quadratic optimization with L0-“norm” constraints. Since such problems are non-convex and hard-to-solve, the standard approach is, instead, to tackle their convex surrogates based on L1-norm relaxations. In this paper, we propose new iterative conic quadratic relaxations that exploit not only the L0-“norm” … Read more