Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

Conflict analysis has been successfully generalized from Boolean satisfiability (SAT) solving to mixed integer programming (MIP) solvers, but although MIP solvers operate with general linear inequalities, the conflict analysis in MIP has been limited to reasoning with the more restricted class of clausal constraint. This is in contrast to how conflict analysis is performed in … Read more

Using Multiple Reference Vectors and Objective Scaling in the Feasibility Pump

The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate … Read more

Learning to Use Local Cuts

An essential component in modern solvers for mixed-integer (linear) programs (MIPs) is the separation of additional inequalities (cutting planes) to tighten the linear programming relaxation. Various algorithmic decisions are necessary when integrating cutting plane methods into a branch-and-bound (B&B) solver as there is always the trade-off between the efficiency of the cuts and their costs, … Read more

Learning To Scale Mixed-Integer Programs

Many practical applications require the solution of numerically challenging linear programs (LPs) and mixed-integer programs (MIPs). Scaling is a widely used preconditioning technique that aims at reducing the error propagation of the involved linear systems, thereby improving the numerical behavior of the dual simplex algorithm and, consequently, LP-based branch-and-bound. A reliable scaling method often makes … Read more

The confined primal integral

It is a challenging task to fairly compare local solvers and heuristics against each other and against global solvers. How does one weigh a faster termination time against a better quality of the found solution? In this paper, we introduce the confined primal integral, a new performance measure that rewards a balance of speed and … Read more

Conflict Analysis for MINLP

The generalization of MIP techniques to deal with nonlinear, potentially non-convex, constraints have been a fruitful direction of research for computational MINLP in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers towards the case of nonlinear optimization: the analysis of infeasible subproblems … Read more

Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores

Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in … Read more

Computational Aspects of Infeasibility Analysis in Mixed Integer Programming

The analysis of infeasible subproblems plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The … Read more

Conflict-Free Learning for Mixed Integer Programming

Conflict learning plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. A major step for MIP conflict learning is to aggregate the LP relaxation of an infeasible subproblem to a single globally valid constraint, the dual proof, that proves infeasibility within the local bounds. Among others, … Read more

MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library

We report on the selection process leading to the sixth version of the Mixed Integer Programming Library. Selected from an initial pool of 5,721 instances, the new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was specially selected for benchmarking solver performance. For the first time, these sets were compiled using … Read more