Asynchronous Coordinate Descent under More Realistic Assumptions

Asynchronous-parallel algorithms have the potential to vastly speed up algorithms by eliminating costly synchronization. However, our understanding to these algorithms is limited because the current convergence of asynchronous (block) coordinate descent algorithms are based on somewhat unrealistic assumptions. In particular, the age of the shared optimization variables being used to update a block is assumed … Read more

On Nonconvex Decentralized Gradient Descent

Consensus optimization has received considerable attention in recent years. A number of decentralized algorithms have been proposed for {convex} consensus optimization. However, to the behaviors or consensus \emph{nonconvex} optimization, our understanding is more limited. When we lose convexity, we cannot hope our algorithms always return global solutions though they sometimes still do sometimes. Somewhat surprisingly, … Read more

On the Convergence of Asynchronous Parallel Iteration with Arbitrary Delays

Recent years have witnessed the surge of asynchronous parallel (async-parallel) iterative algorithms due to problems involving very large-scale data and a large number of decision variables. Because of asynchrony, the iterates are computed with outdated information, and the age of the outdated information, which we call \emph{delay}, is the number of times it has been … Read more

Expander Graph and Communication-Efficient Decentralized Optimization

In this paper, we discuss how to design the graph topology to reduce the communication complexity of certain algorithms for decentralized optimization. Our goal is to minimize the total communication needed to achieve a prescribed accuracy. We discover that the so-called expander graphs are near-optimal choices. We propose three approaches to construct expander graphs for … Read more

Decentralized Consensus Optimization with Asynchrony and Delays

We propose an asynchronous, decentralized algorithm for consensus optimization. The algorithm runs over a network in which the agents communicate with their neighbors and perform local computation. In the proposed algorithm, each agent can compute and communicate independently at different times, for different durations, with the information it has even if the latest information from … Read more

Global Convergence of ADMM in Nonconvex Nonsmooth Optimization

In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, $\phi(x_0,\ldots,x_p,y)$, subject to coupled linear equality constraints. Our ADMM updates each of the primal variables $x_0,\ldots,x_p,y$, followed by updating the dual variable. We separate the variable $y$ from $x_i$’s as it … Read more

Cyclic Coordinate Update Algorithms for Fixed-Point Problems: Analysis and Applications

Many problems reduce to the fixed-point problem of solving $x=T(x)$. To this problem, we apply the coordinate-update algorithms, which update only one or a few components of $x$ at each step. When each update is cheap, these algorithms are faster than the full fixed-point iteration (which updates all the components). In this paper, we focus … Read more

On Unbounded Delays in Asynchronous Parallel Fixed-Point Algorithms

The need for scalable numerical solutions has motivated the development of asynchronous parallel algorithms, where a set of nodes run in parallel with little or no synchronization, thus computing with delayed information. This paper studies the convergence of the asynchronous parallel algorithm ARock under potentially unbounded delays. ARock is a general asynchronous algorithm that has … Read more

TMAC: A Toolbox of Modern Async-Parallel, Coordinate, Splitting, and Stochastic Methods

TMAC is a toolbox written in C++11 that implements algorithms based on a set of mod- ern methods for large-scale optimization. It covers a variety of optimization problems, which can be both smooth and nonsmooth, convex and nonconvex, as well as constrained and unconstrained. The algorithms implemented in TMAC, such as the coordinate up- date … Read more

Coordinate Friendly Structures, Algorithms and Applications

This paper focuses on coordinate update methods, which are useful for solving problems involving large or high-dimensional datasets. They decompose a problem into simple subproblems, where each updates one, or a small block of, variables while fixing others. These methods can deal with linear and nonlinear mappings, smooth and nonsmooth functions, as well as convex … Read more