Polyhedral combinatorics of a resource-constrained ordering problem part I: on the partial linear ordering polytope

This paper is the first of a series of two devoted to the polyhedral study of a strongly NP-hard resource-constrained scheduling problem, referred to as the process move programming problem. This problem arises in relation to the operability of certain high-availability real time distributed systems. After a brief introduction to the problem as well as … Read more

Polyhedral combinatorics of a resource-constrained ordering problem part II: on the process move program polytope

This paper is the second of a series of two devoted to the polyhedral study of a strongly NP-hard resource-constrained scheduling problem, referred to as the process move programming problem. In the present paper, we put back into the picture the capacity constraints which were ignored in the first paper. In doing so, we introduce … Read more

Large Scale Portfolio Optimization with Piecewise Linear Transaction Costs

We consider the fundamental problem of computing an optimal portfolio based on a quadratic mean-variance model of the objective function and a given polyhedral representation of the constraints. The main departure from the classical quadratic programming formulation is the inclusion in the objective function of piecewise linear, separable functions representing the transaction costs. We handle … Read more

An Approximation Algorithm for Constructing Error Detecting Prefix Codes

A $k$-bit Hamming prefix code is a binary code with the following property: for any codeword $x$ and any prefix $y$ of another codeword, both $x$ and $y$ having the same length, the Hamming distance between $x$ and $y$ is at least $k$. Given an alphabet $A = [a_1,\ldots,a_n]$ with corresponding probabilities $[p_1,\ldots,p_n]$, the $k$-bit … Read more

A polyhedral approach to reroute sequence planning in MPLS networks

This paper is devoted to the study of the reroute sequence planning problem in multi-protocol label switching networks from the polyhedral viewpoint. The reroute sequence plan polytope, defined as the convex hull of the incidence vectors of the reroute sequences which do not violate the network link capacities, is introduced and some of its properties … Read more

Combinatorial optimization problems in wireless switch design

The purpose of this paper is to illustrate the diversity of combinatorial problems encountered in the design of wireless switching systems. This is done via a representative selection of examples of real problems along with their associated resolution methods. It should be emphasized that all the resolution methods presented in this paper are successfully operating … Read more

Local versus Global Profit Maximization: The Case of Discrete Concave Production Functions

In this paper we show that for discrete concave functions, a local maximum need not be a global maximum. We also provide examples of discrete concave functions where this coincidence holds. As a direct consequence of this, we can establish the equivalence of local and global profit maximizers for an equivalent well-behaved production function that … Read more

Step decision rules for multistage stochastic programming: a heuristic approach

Stochastic programming with step decision rules, SPSDR, is an attempt to overcome the curse of computational complexity of multistage stochastic programming problems. SPSDR combines several techniques. The first idea is to work with independent experts. Each expert is confronted with a sample of scenarios drawn at random from the original stochastic process. The second idea … Read more

An efficient method to compute traffic assignment problems with elastic demands

The traffic assignment problem with elastic demands can be formulated as an optimization problem, whose objective is sum of a congestion function and a disutility function. We propose to use a variant of the Analytic Center Cutting Plane Method to solve this problem. We test the method on instances with different congestion functions (linear with … Read more

Static-arbitrage bounds on the prices of basket options via linear programming

We show that the problem of computing sharp upper and lower static-arbitrage bounds on the price of a European basket option, given the prices of other similar options, can be cast as a linear program (LP). The LP formulations readily yield super-replicating (sub-replicating) strategies for the upper (lower) bound problem. The dual counterparts of the … Read more