A direct formulation for sparse PCA using semidefinite programming

We examine the problem of approximating, in the Frobenius-norm sense, a positive, semidefinite symmetric matrix by a rank-one matrix, with an upper bound on the cardinality of its eigenvector. The problem arises in the decomposition of a covariance matrix into sparse factors, and has wide applications ranging from biology to finance. We use a modification … Read more

Robust Capacity Expansion of Transit Networks

In this paper we present a methodology to decide capacity expansions for a transit network that finds a robust solution with respect to the uncertainty in demands and travel times. We show that solving for a robust solution is a computationally tractable problem under conditions that are reasonable for a transportation system. For example, the … Read more

Solving Multistage Asset Investment Problems by the Sample Average Approximation Method

The vast size of real world stochastic programming instances requires sampling to make them practically solvable. In this paper we extend the understanding of how sampling affects the solution quality of multistage stochastic programming problems. We present a new heuristic for determining good feasible solutions for a multistage decision problem. For power and log-utility functions … Read more

A Global Optimization Problem in Portfolio Selection

This paper deals with the issue of buy-in thresholds in portfolio optimization using the Markowitz approach. Optimal values of invested fractions calculated using, for instance, the classical minimum-risk problem can be unsatisfactory in practice because they imply that very small amounts of certain assets are purchased. Realistically, we want to impose a disjoint restriction so … Read more

Solving the Vehicle Routing Problem with Stochastic Demands using the Cross Entropy Method

An alternate formulation of the classical vehicle routing problem with stochastic demands (VRPSD)is considered. We propose a new heuristic method to solve the problem. The algorithm is a modified version of the so-called Cross-Entropy method, which has been proposed in the literature as a heuristics for deterministic combinatorial optimization problems based upon concepts of rare-event … Read more

Solving large scale linear multicommodity flow problems with an active set strategy and Proximal-ACCPM

In this paper, we propose to solve the linear multicommodity flow problem using a partial Lagrangian relaxation. The relaxation is restricted to the set of arcs that are likely to be saturated at the optimum. This set is itself approximated by an active set strategy. The partial Lagrangian dual is solved with Proximal-ACCPM, a variant … Read more

Construction project scheduling problem with uncertain resource constraints

This paper discusses that major problem is the construction project scheduling mathematical model and a simple algorithm in the uncertain resource environments. The project scheduling problem with uncertain resource constraints comprised mainly three parties: one of which its maximal limited capacity is fixed throughout the project duration; second maximal limited resource capacity is random variable; … Read more

Pointillism via Linear Programming

Pointillism is a painting technique in which the painter places dots of paint on the canvas in such a way that they blend together into desired forms when viewed from a distance. In this brief note, we describe how to use linear programming to construct a pointillist portrait. CitationDept. of Mathematics, Oberlin College, Oberlin, OH … Read more

Vehicle routing and staffing for sedan service

We present the optimization component of a decision support system developed for a sedan service provider. The system assists supervisors and dispatchers in scheduling driver shifts and routing the fleet throughout the day to satisfy customer demands within tight time windows. We periodically take a snapshot of the dynamic data and formulate an integer program, … Read more