Ensemble Methods for Robust Support Vector Machines using Integer Programming

In this work we study binary classification problems where we assume that our training data is subject to uncertainty, i.e. the precise data points are not known. To tackle this issue in the field of robust machine learning the aim is to develop models which are robust against small perturbations in the training data. We … Read more

Portfolio optimization in the presence of estimation errors on the expected asset returns

It is well known that the classical Markowitz model for portfolio optimization is extremely sensitive to estimation errors on the expected asset returns. Robust optimization mitigates this issue. We focus on ellipsoidal uncertainty sets around the point estimates of the expected asset returns. We investigate the performance of diagonal estimation-error matrices in the description of … Read more

Theoretical Insights and a New Class of Valid Inequalities for the Temporal Bin Packing Problem with Fire-Ups

The temporal bin packing problem with fire-ups (TBPP-FU) is a two-dimensional packing problem where one geometric dimension is replaced by a time horizon. The given items (jobs) are characterized by a resource consumption, that occurs exclusively during an activity interval, and they have to be placed on servers so that the capacity constraint is respected … Read more

Heuristic approaches for split delivery vehicle routing problems

We propose a matheuristic approach to solve split delivery variants of the vehicle routing problem (VRP). The proposed method is based on the use of several mathematical programming components within an Iterated Local Search metaheuristic framework. In addition to well-known VRP local search heuristics, we include new types of improvement and perturbation strategies that are … Read more

Scalable Timing-Aware Network Design via Lagrangian Decomposition

This paper addresses instances of the temporal fixed-charge multi-commodity flow (tfMCF) problem that arise in a very large scale dynamic transportation application. We model the tfMCF as a discrete-time Resource Task Network (RTN) with cyclic schedule, and formulate it as a mixed-integer program. These problems are notoriously hard to solve due to their time-expanded nature, … Read more

Solving a Multi-product, Multi-period, Multi-modal Freight Transportation Problem Using Integer Linear Programming

We consider a real-world multimodal freight transportation problem that arises in a food grain organization in India. This problem aims to satisfy the demand for a set of warehouses for different types of food grains from another set of warehouses with surplus quantities over multiple periods of time by rail and road, while minimizing the … Read more

Who Has Access to E-Commerce and When? Time-Varying Service Regions in Same-Day Delivery

Motivated by access and equity issues in e-commerce, we study the design of same-day delivery (SDD) systems under the assumption that service regions are allowed to vary over the course of the day; equivalently, that customers in different locations may have access to SDD for different lengths of time over the service day or may … Read more

Fleet & tail assignment under uncertainty

Airlines solve many different optimization problems and combine the resulting solutions to ensure smooth, minimum-cost operations. Crucial problems are the Fleet Assignment, which assigns aircraft types to flights of a given schedule, and the Tail Assignment, which determines individual flight sequences to be performed by single aircraft. In order to find a cost-optimal solution, many … Read more

The impact of passive social media viewers in influence maximization

A frequently studied problem in the context of digital marketing for online social networks is the influence maximization problem that seeks for an initial seed set of influencers to trigger an information propagation cascade (in terms of active message forwarders) of expected maximum impact. Previously studied problems typically neglect that the probability that individuals passively … Read more

Dynamic courier capacity acquisition in rapid delivery systems: a deep Q-learning approach

With the recent boom of the gig economy, urban delivery systems have experienced substantial demand growth. In such systems, orders are delivered to customers from local distribution points respecting a delivery time promise. An important example is a restaurant meal delivery system, where delivery times are expected to be minutes after an order is placed. … Read more