Compact Formulations for Split Delivery Routing Problems

Split delivery routing problems are concerned with serving the demand of a set of customers with a fleet of capacitated vehicles at minimum cost, where a customer can be served by more than one vehicle if beneficial. They generalize traditional variants of routing problems and have applications in commercial as well as humanitarian logistics. Previously, … Read more

Exact approaches to the robust vehicle routing problem with time windows and multiple deliverymen

This paper addresses the vehicle routing problem with time windows and multiple deliverymen (VRPTWMD) under uncertain demand as well as uncertain travel and service times. This variant is faced by logistics companies that deliver products to retailers located in congested urban areas, where service times are relatively long compared to travel times. In addition to … Read more

An Exact Solution Approach for the Inventory Routing Problem with Time Windows

The inventory routing problem (IRP) is an integrated inventory and transportation planning problem that jointly determines the replenishment schedules for a given set of retailers, and the routing decisions for a supplier that distributes a product to the retailers over a finite planning horizon typically consisting of multiple periods. In the classical IRP, retailers are … Read more

Multi-Module Capacitated Lot-Sizing Problem, and its Generalizations with Two-Echelons and Piecewise Concave Production Costs

We study new generalizations of the classical capacitated lot-sizing problem with concave production (or transportation), holding, and subcontracting cost functions in which the total production (or transportation) capacity in each time period is the summation of capacities of a subset of n available modules (machines or vehicles) of different capacities. We refer to this problem … Read more

Arc routing with electric vehicles: dynamic charging and speed-dependent energy consumption

Concerns about greenhouse gas emissions and government regulations foster the use of electric vehicles. Several recently published articles study the use of electric vehicles (EVs) in node-routing problems. In contrast, this article considers EVs in the context of arc routing while also addressing practically relevant aspects that have not been addressed sufficiently so far. These … Read more

A Dynamic Mobile Production Capacity and Inventory Control Problem

We analyze a problem of dynamic logistics planning given uncertain demands for a multi-location production-inventory system with transportable modular production capacity. In such systems, production modules provide capacity, and can be moved from one location to another to produce stock and satisfy demand. We formulate a dynamic programming model for a planning problem that considers … Read more

Analysis of Process Flexibility Designs under Disruptions

Most of the previous studies of process flexibility designs have focused on expected sales and demand uncertainty. In this paper, we examine the worst-case performance of flexibility designs in the case of demand and supply uncertainties, where the latter can be in the form of either plant or arc disruptions. We define the Plant Cover … Read more

A multi-stage stochastic integer programming approach for a multi-echelon lot-sizing problem with returns and lost sales

We consider an uncapacitated multi-item multi-echelon lot-sizing problem within a remanufacturing system involving three production echelons: disassembly, refurbishing and reassembly. We seek to plan the production activities on this system over a multi-period horizon. We consider a stochastic environment, in which the input data of the optimization problem are subject to uncertainty. We propose a … Read more

Probabilistic Envelope Constrained Multiperiod Stochastic Emergency Medical Services Location Model and Decomposition Scheme

This paper considers a multiperiod Emergency Medical Services (EMS) location problem and introduces two two-stage stochastic programming formulations that account for uncertainty about emergency demand. While the first model considers both a constraint on the probability of covering the realized emergency demand and minimizing the expected cost of doing so, the second one employs probabilistic … Read more

A two-stage stochastic optimization model for the bike-sharing allocation and rebalancing problem

The Bike-sharing allocation and rebalancing problem is the problem of determining the initial daily allocation of bikes to stations in a bike-sharing system composed of one depot and multiple capacitated stations, in which bikes can be rebalanced at a point in time during the day. Due to the uncertain demand in each station, we propose … Read more