Models and algorithms for the robust resource constrained shortest path problem

We study the robust resource constrained shortest path problem (RCSPP) under uncertainty in cost and multiple resource consumption. Contrary to the deterministic RCSPP where the cost and the consumption of resources on an arc are known and fixed, the robust RCSPP models the case where both the cost and the resource consumption are random, and … Read more

Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs

Two critical yet frequently conflicting objectives for logistics and transportation service companies are improving customer satisfaction and reducing transportation cost. In particular, given a net- work of customer requests with preferred service times, it is very challenging to find vehicle routes and service schedules simultaneously that respect all operating constraints and minimize the total transportation … Read more

Revisiting the Hamiltonian p-median problem: a new formulation on directed graphs and a branch-and-cut algorithm

This paper studies the Hamiltonian p-median problem defined on a directed graph, which consists of finding p mutually disjoint circuits of minimum total cost, such that each node of the graph is included in one of the circuits. Earlier formulations are based on viewing the problem as one resulting from the intersection of two subproblems. … Read more

Exact and heuristic algorithms for finding envy-free allocations in food rescue pickup and delivery logistics

Food rescue organizations collect and re-distribute surplus perishable food for hunger relief. We propose novel approaches to address this humanitarian logistics challenge and find envy-free allocations of the rescued food together with least travel cost routes. We show that this food rescue and delivery problem is NP-hard and we present a cutting-plane algorithm based on … Read more

A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty

We focus on a problem of locating recharging stations in one-way station based electric car sharing systems which operate under demand uncertainty. We model this problem as a mixed integer stochastic program and develop a Benders decomposition algorithm based on this formulation. We integrate a stabilization procedure to our algorithm and conduct a large-scale experimental … Read more

The robust vehicle routing problem with time windows: compact formulation and branch-price-and-cut method

We address the robust vehicle routing problem with time windows (RVRPTW) under customer demand and travel time uncertainties. As presented thus far in the literature, robust counterparts of standard formulations have challenged general-purpose optimization solvers and specialized branch-and-cut methods. Hence, optimal solutions have been reported for small-scale instances only. Additionally, although the most successful methods … Read more

The Continuous Time Inventory Routing Problem

We consider a continuous time variant of the Inventory Routing Problem in which the maximum quantity that can delivered at a customer depends on the customer’s storage capacity and product inventory at the time of the delivery. We investigate critical components of a dynamic discretization discovery algorithm and demonstrate in an extensive computational study that … Read more

Network Models with Unsplittable Node Flows with Application to Unit Train Scheduling

We study network models where flows cannot be split or merged when passing through certain nodes, i.e., for such nodes, each incoming arc flow must be matched to an outgoing arc flow of identical value. This requirement, which we call “no-split no-merge” (NSNM), appears in railroad applications where train compositions can only be modified at … Read more

Exact Methods for Solving Traveling Salesman Problems with Pickup and Delivery in Real Time

The Traveling Salesman Problem with Pickup and Delivery (TSPPD) describes the problem of finding a minimum cost path in which pickups precede their associated deliveries. The TSPPD is particularly important in the growing field of Dynamic Pickup and Delivery Problems (DPDP). These include the many-to-many Dial-A-Ride Problems (DARP) of companies such as Uber and Lyft, … Read more

Branch-and-Price for Routing with Probabilistic Customers

The Vehicle Routing Problem with Probabilistic Customers (VRP-PC) is a fundamental building block within the broad family of stochastic routing models, and has two decision stages. In the first stage, a dispatcher determines a set of vehicle routes serving all potential customer locations, before actual requests for service realize. In the second stage, vehicles are … Read more