An Exact Algorithm for the Two-echelon Vehicle Routing Problem with Drones

This paper studies a new variant of the vehicle routing problem with drones, i.e., the two-echelon vehicle routing problem with drones, where multiple vehicles and drones work collaboratively to serve customers. Drones can perform multiple back-and-forth trips when their paired vehicle stops at a customer node, forming a two-echelon network. Several practical constraints such as … Read more

Heuristic approaches for split delivery vehicle routing problems

We propose a matheuristic approach to solve split delivery variants of the vehicle routing problem (VRP). The proposed method is based on the use of several mathematical programming components within an Iterated Local Search metaheuristic framework. In addition to well-known VRP local search heuristics, we include new types of improvement and perturbation strategies that are … Read more

Scalable Timing-Aware Network Design via Lagrangian Decomposition

This paper addresses instances of the temporal fixed-charge multi-commodity flow (tfMCF) problem that arise in a very large scale dynamic transportation application. We model the tfMCF as a discrete-time Resource Task Network (RTN) with cyclic schedule, and formulate it as a mixed-integer program. These problems are notoriously hard to solve due to their time-expanded nature, … Read more

Solving a Multi-product, Multi-period, Multi-modal Freight Transportation Problem Using Integer Linear Programming

We consider a real-world multimodal freight transportation problem that arises in a food grain organization in India. This problem aims to satisfy the demand for a set of warehouses for different types of food grains from another set of warehouses with surplus quantities over multiple periods of time by rail and road, while minimizing the … Read more

Who Has Access to E-Commerce and When? Time-Varying Service Regions in Same-Day Delivery

Motivated by access and equity issues in e-commerce, we study the design of same-day delivery (SDD) systems under the assumption that service regions are allowed to vary over the course of the day; equivalently, that customers in different locations may have access to SDD for different lengths of time over the service day or may … Read more

Dynamic courier capacity acquisition in rapid delivery systems: a deep Q-learning approach

With the recent boom of the gig economy, urban delivery systems have experienced substantial demand growth. In such systems, orders are delivered to customers from local distribution points respecting a delivery time promise. An important example is a restaurant meal delivery system, where delivery times are expected to be minutes after an order is placed. … Read more

Metaheuristic, Models and Software for the Heterogeneous Fleet Pickup and Delivery Problem with Split Loads

This paper addresses a rich variant of the vehicle routing problem (VRP) that involves pickup and delivery activities, customer time windows, heterogeneous fleet, multiple products and the possibility of splitting a customer demand among several routes. This variant generalizes traditional VRP variants by incorporating features that are commonly found in practice. We present two mixed-integer … Read more

Hub Network Design Problem with Capacity, Congestion and Stochastic Demand Considerations

We introduce the hub network design problem with congestion, capacity, and stochastic demand considerations (HNDC), which generalizes the classical hub location problem in several directions. In particular, we extend state-of-the-art by integrating capacity acquisition decision and congestion cost effect into the problem and allowing dynamic routing for origin-destination pairs. Connecting strategic and operational level decisions, … Read more

Incremental Network Design with Multi-commodity Flows

We introduce a novel incremental network design problem motivated by the expansion of hub capacities in package express service networks: the \textit{incremental network design problem with multi-commodity flows}. We are given an initial and a target service network design, defined by a set of nodes, arcs, and origin-destination demands (commodities), and we seek to find … Read more

Freight-on-Transit for urban last-mile deliveries: A Strategic Planning Approach

We study a delivery strategy for last-mile deliveries in urban areas which combines freight transportation with mass mobility systems with the goal of creating synergies contrasting negative externalities caused by transportation. The idea is to use the residual capacity on public transport means for moving freights within the city. In particular, the system is such … Read more