Exact Solutions to a Carsharing Pricing and Relocation Problem under Uncertainty

In this article we study the problem of jointly deciding carsharing prices and vehicle relocations. We consider carsharing services operating in the context of multi-modal urban transportation systems. Pricing decisions take into account the availability of alternative transport modes, and customer preferences with respect to these. In order to account for the inherent uncertainty in … Read more

An efficient solution methodology for the airport slot allocation problem with preprocessing and column generation

Airport coordination is a demand control mechanism that maximizes the use of existing infrastructure at congested airports. Aircraft operators submit a list of regular flights that they wish to operate over a five to seven-month period and a designated coordinator is responsible for allocating the available airport slots, which represent the permission to operate a … Read more

Efficient Formulations for Multiple Allocation Hub Network Interdiction Problems

In this paper, we study a network interdiction problem on a multiple allocation, uncapacitated hub network. The problem is formulated as a bilevel Stackelberg game between an attacker and a defender, where the attacker identifies r out of p hubs to interdict so as to maximize the worst-case post-interdiction performance of the system with the … Read more

A Novel Model for Transfer Synchronization in Transit Networks and a Lagrangian-based Heuristic Solution Method

To realize the benefits of network connectivity in transfer-based transit networks, it is critical to minimize transfer disutility for passengers by synchronizing timetables of intersecting routes. We propose a mixed-integer linear programming timetable synchronization model that incorporates new features, such as dwell time determination and vehicle capacity limit consideration, which have been largely overlooked in … Read more

An Exact Algorithm for the Two-echelon Vehicle Routing Problem with Drones

This paper studies a new variant of the vehicle routing problem with drones, i.e., the two-echelon vehicle routing problem with drones, where multiple vehicles and drones work collaboratively to serve customers. Drones can perform multiple back-and-forth trips when their paired vehicle stops at a customer node, forming a two-echelon network. Several practical constraints such as … Read more

Heuristic approaches for split delivery vehicle routing problems

We propose a matheuristic approach to solve split delivery variants of the vehicle routing problem (VRP). The proposed method is based on the use of several mathematical programming components within an Iterated Local Search metaheuristic framework. In addition to well-known VRP local search heuristics, we include new types of improvement and perturbation strategies that are … Read more

Scalable Timing-Aware Network Design via Lagrangian Decomposition

This paper addresses instances of the temporal fixed-charge multi-commodity flow (tfMCF) problem that arise in a very large scale dynamic transportation application. We model the tfMCF as a discrete-time Resource Task Network (RTN) with cyclic schedule, and formulate it as a mixed-integer program. These problems are notoriously hard to solve due to their time-expanded nature, … Read more

Solving a Multi-product, Multi-period, Multi-modal Freight Transportation Problem Using Integer Linear Programming

We consider a real-world multimodal freight transportation problem that arises in a food grain organization in India. This problem aims to satisfy the demand for a set of warehouses for different types of food grains from another set of warehouses with surplus quantities over multiple periods of time by rail and road, while minimizing the … Read more

Who Has Access to E-Commerce and When? Time-Varying Service Regions in Same-Day Delivery

Motivated by access and equity issues in e-commerce, we study the design of same-day delivery (SDD) systems under the assumption that service regions are allowed to vary over the course of the day; equivalently, that customers in different locations may have access to SDD for different lengths of time over the service day or may … Read more

Dynamic courier capacity acquisition in rapid delivery systems: a deep Q-learning approach

With the recent boom of the gig economy, urban delivery systems have experienced substantial demand growth. In such systems, orders are delivered to customers from local distribution points respecting a delivery time promise. An important example is a restaurant meal delivery system, where delivery times are expected to be minutes after an order is placed. … Read more