Exploiting separability in large-scale linear support vector machine training

Linear support vector machine training can be represented as a large quadratic program. We present an efficient and numerically stable algorithm for this problem using interior point methods, which requires only O(n) operations per iteration. Through exploiting the separability of the Hessian, we provide a unified approach, from an optimization perspective, to 1-norm classification, 2-norm … Read more

Optimization for Simulation: LAD Accelerator

The goal of this paper is to address the problem of evaluating the performance of a system running under unknown values for its stochastic parameters. A new approach called LAD for Simulation, based on simulation and classification software, is presented. It uses a number of simulations with very few replications and records the mean value … Read more

A Coordinate Gradient Descent Method for Linearly Constrained Smooth Optimization and Support Vector Machines Training

Support vector machines (SVMs) training may be posed as a large quadratic program (QP) with bound constraints and a single linear equality constraint. We propose a (block) coordinate gradient descent method for solving this problem and, more generally, linearly constrained smooth optimization. Our method is closely related to decomposition methods currently popular for SVM training. … Read more

REVERSE-ENGINEERING COUNTRY RISK RATINGS: COMBINATORIAL NON-RECURSIVE MODEL

The central objective of this paper is to develop a transparent, consistent, self-contained, and stable country risk rating model, closely approximating the country risk ratings provided by Standard and Poor’s (S&P). The models should be non-recursive, i.e., they should not rely on the previous years’ S&P ratings. The selected set of variables includes not only … Read more

Approximating the Radii of Point Sets

We consider the problem of computing the outer-radii of point sets. In this problem, we are given integers $n, d, k$ where $k \le d$, and a set $P$ of $n$ points in $R^d$. The goal is to compute the {\em outer $k$-radius} of $P$, denoted by $\kflatr(P)$, which is the minimum, over all $(d-k)$-dimensional … Read more

An Extension of a Minimax Approach to Multiple Classification

When the mean vectors and the covariance matrices of two classes are available in a binary classification problem, Lanckriet et al.\ \cite{mpm} propose a minimax approach for finding a linear classifier which minimizes the worst-case (maximum) misclassification probability. We extend the minimax approach to a multiple classification problem, where the number $m$ of classes could … Read more

Multi-group Support Vector Machines with measurement costs: a biobjective approach

Support Vector Machine has shown to have good performance in many practical classification settings. In this paper we propose, for multi-group classification, a biobjective optimization model in which we consider not only the generalization ability (modelled through the margin maximization), but also costs associated with the features. This cost is not limited to an economical … Read more

Detecting relevant variables and interactions for classification in Support Vector Machines

The widely used Support Vector Machine (SVM) method has shown to yield good results in Supervised Classification problems. The Binarized SVM (BSVM) is a variant which is able to automatically detect which variables are, by themselves, most relevant for the classifier. In this work, we extend the BSVM introduced by the authors to a method … Read more

A Column Generation Approach for Support Vector Machines

The widely used Support Vector Machine (SVM) method has shown to yield good results in Supervised Classification problems. Other methods such as Classification Trees have become more popular among practitioners than SVM thanks to their interpretability, which is an important issue in Data Mining. In this work, we propose an SVM-based method that automatically detects … Read more

Support Vector Machine via Sequential Subspace Optimization

We present an optimization engine for large scale pattern recognition using Support Vector Machine (SVM). Our treatment is based on conversion of soft-margin SVM constrained optimization problem to an unconstrained form, and solving it using newly developed Sequential Subspace Optimization (SESOP) method. SESOP is a general tool for large-scale smooth unconstrained optimization. At each iteration … Read more