Machine Learning to Balance the Load in Parallel Branch-and-Bound

We describe in this paper a new approach to parallelize branch-and-bound on a certain number of processors. We propose to split the optimization of the original problem into the optimization of several subproblems that can be optimized separately with the goal that the amount of work that each processor carries out is balanced between the … Read more

Discrete optimization methods to fit piecewise-affine models to data points

Fitting piecewise affine models to data points is a pervasive task in many scientific disciplines. In this work, we address the k- Piecewise Affine Model Fitting with Pairwise Linear Separability problem (k-PAMF-PLS) where, given a set of real points and the corresponding observations, we have to partition the real domain into k pairwise linearly separable … Read more

Successive Rank-One Approximations of Nearly Orthogonally Decomposable Symmetric Tensors

Many idealized problems in signal processing, machine learning and statistics can be reduced to the problem of finding the symmetric canonical decomposition of an underlying symmetric and orthogonally decomposable (SOD) tensor. Drawing inspiration from the matrix case, the successive rank-one approximations (SROA) scheme has been proposed and shown to yield this tensor decomposition exactly, and … Read more

An optimization-based method for feature ranking in nonlinear regression problems

In this work we consider the feature ranking problem where, given a set of training instances, the task is to associate a score to the features in order to assess their relevance. Feature ranking is a very important tool for decision support systems, and may be used as an auxiliary step of feature selection to … Read more

Sequential Threshold Control in Descent Splitting Methods for Decomposable Optimization Problems

We suggest a modification of the descent splitting methods for decomposable composite optimization problems, which maintains the basic convergence properties, but enables one to reduce the computational expenses per iteration and to provide computations in a distributed manner. It consists in making coordinate-wise steps together with a special threshold control. Citation Kazan Federal University, Kazan … Read more

HIPAD – A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection

We consider classification tasks in the regime of scarce labeled training data in high dimensional feature space, where specific expert knowledge is also available. We propose a new hybrid optimization algorithm that solves the elastic-net support vector machine (SVM) through an alternating direction method of multipliers in the first phase, followed by an interior-point method … Read more

Local Convergence of an Algorithm for Subspace Identification from Partial Data

GROUSE (Grassmannian Rank-One Update Subspace Estimation) is an iterative algorithm for identifying a linear subspace of $\R^n$ from data consisting of partial observations of random vectors from that subspace. This paper examines local convergence properties of GROUSE, under assumptions on the randomness of the observed vectors, the randomness of the subset of elements observed at … Read more

Finding the largest low-rank clusters with Ky Fan 2-k-norm and l1-norm

We propose a convex optimization formulation with the Ky Fan 2-k-norm and l1-norm to fi nd k largest approximately rank-one submatrix blocks of a given nonnegative matrix that has low-rank block diagonal structure with noise. We analyze low-rank and sparsity structures of the optimal solutions using properties of these two matrix norms. We show that, under … Read more

A Stochastic Quasi-Newton Method for Large-Scale Optimization

Abstract The question of how to incorporate curvature information in stochastic approximation methods is challenging. The direct application of classical quasi- Newton updating techniques for deterministic optimization leads to noisy curvature estimates that have harmful effects on the robustness of the iteration. In this paper, we propose a stochastic quasi-Newton method that is efficient, robust … Read more

Alternating direction method of multipliers for sparse zero-variance discriminant analysis and principal component analysis

We consider the task of classification in the high-dimensional setting where the number of features of the given data is significantly greater than the number of observations. To accomplish this task, we propose sparse zero-variance discriminant analysis (SZVD) as a method for simultaneouslyperforming linear discriminant analysis and feature selection on high-dimensional data. This method combines … Read more