A hybrid multistart heuristic for the uncapacitated facility location problem

We present a multistart heuristic for the uncapacitated facility location problem, based on a very successful method we originally developed for the P-median problem. We show extensive empirical evidence to the effectiveness of our algorithm in practice. For most benchmarks instances in the literature, we obtain solutions that are either optimal or a fraction of … Read more

A Fast Swap-based Local Search Procedure for Location Problems

We present a new implementation of a widely used swap-based local search procedure for the P-median problem, proposed in 1968 by Teitz and Bart. Our method produces the same output as the best alternatives described in the literature and, even though it does not have a better worst-case complexity, it can be significantly faster in … Read more

Intermediate Report on the development of an optimization code for smooth, high computing load, continuous objective functions when derivatives are not available

We find very often in the industry simulators of huge chemical reactors, simulators of huge turbo-compressors, simulators of the path of a satellite in low orbit around earth, … These simulators were written to allow the design engineer to correctly estimate the consequences of the adjustment of one (or many) design variables (or parameters of … Read more

Optimization of A Fed-batch Fermentation Process Control Competition Problem Using NEOS

An optimal control solution to a fed-batch fermentation process, responding to a competition call, was developed using NEOS Server. Substantial improvement to the nominal performance achieved in the paper demonstrates the ability of the NEOS Server and the APPS algorithm. CitationProceedings of Inst. of Mechanical Engineers , Part-I (UK). To appear. (Accepted May 2003).ArticleDownload View … Read more

Gradient Projection Methods for Quadratic Programs and Applications in Training Support Vector Machines

Gradient projection methods based on the Barzilai-Borwein spectral steplength choices are considered for quadratic programming problems with simple constraints. Well known nonmonotone spectral projected gradient methods and variable projection methods are discussed. For both approaches the behavior of different combinations of the two spectral steplengths is investigated. A nw adaptive stplength alternating rule is proposed, … Read more

Reservoir Operation by Ant Colony Optimization Algorithms

In this paper, ant colony optimization (ACO) algorithms are proposed for reservoir operation. Through a collection of cooperative agents called ants, the nearoptimum solution to the reservoir operation can be effectively achieved. To apply ACO algorithms, the problem is approached by considering a finite horizon with a time series of inflow, classifying the reservoir volume … Read more

Mathematical optimization for the inverse problem of intensity modulated radiation therapy

In this tutorial we discuss modeling issues in intensity modulated radiation therapy, contrasting the continuous model with the fully-discretized one and considering feasibility formulations versus optimization setups. We review briefly some mathematical optimization techniques for IMRT. These include global optimization, multi-objective optimization, linear and mixed integer programming and projection methods. Citationin: J.R. Palta and T.R. … Read more

The global optimization of Morse clusters by potential energy transformations

The Morse potential is a simple model pair potential that has a single parameter $\rho$ which determines the width of the potential well and allows a wide variety of materials to be modelled. Morse clusters provide a particularly tough test system for global optimization algorithms, and one that is highly relevant to methods that are … Read more