Optimal Residential Coordination Via Demand Response: A Distributed Framework

This paper proposes an optimization framework for retailers that are involved in demand response (DR) programs. In a first phase responsive users optimize their own household consumption, characterizing not only their appliances and equipment but also their comfort preferences. Then, the retailer exploits in a second phase this preliminary non-coordinated solution to implement a strategy … Read more

Solving Mixed-Integer Nonlinear Optimization Problems using Simultaneous Convexification – a Case Study for Gas Networks

Solving mixed-integer nonlinear optimization problems (MINLPs) to global optimality is extremely challenging. An important step for enabling their solution consists in the design of convex relaxations of the feasible set. Known solution approaches based on spatial branch-and-bound become more effective the tighter the used relaxations are. Relaxations are commonly established by convex underestimators, where each … Read more

On the propagation of quality requirements for mechanical assemblies in industrial manufacturing

A frequent challenge encountered by manufacturers of mechanical assemblies consists of the definition of quality criteria for the assembly lines of the subcomponents which are mounted into the final product. The rollout of Industry 4.0 standards paves the way for the usage of data-driven, intelligent approaches towards this goal. In this work, we investigate such … Read more

Random-Sampling Multipath Hypothesis Propagation for Cost Approximation in Long-Horizon Optimal Control

In this paper, we develop a Monte-Carlo based heuristic approach to approximate the objective function in long horizon optimal control problems. In this approach, we evolve the system state over multiple trajectories into the future while sampling the noise disturbances at each time-step, and find the weighted average of the costs along all the trajectories. … Read more

Economic Interpretation of Demand Curves in Multi-product Electricity Markets

In the absence of direct demand-side bids for certain reliability products in the wholesale electricity markets, Independent System Operators (ISOs) traditionally use fixed demand requirements with penalty factors to clear the market. This approach does not allow proper tradeoffs between reliability and cost due to the inelasticity of the fixed requirements. Therefore, ISOs have been … Read more

A Class of Smooth Exact Penalty Function Methods for Optimization Problems with Orthogonality Constraints

Updating the augmented Lagrangian multiplier by closed-form expression yields efficient first-order infeasible approach for optimization problems with orthogonality constraints. Hence, parallelization becomes tractable in solving this type of problems. Inspired by this closed-form updating scheme, we propose an exact penalty function model with compact convex constraints (PenC). We show that PenC can act as an … Read more

Autonomous traffic at intersections: an optimization-based analysis of possible time, energy, and CO2 savings

In the growing field of autonomous driving, traffic-light controlled intersections as the nodes of large traffic networks are of special interest. We want to analyze how much an optimized coordination of vehicles and infrastructure can contribute to a more efficient transit through these bottlenecks. In addition, we are interested in sensitivity of the results with … Read more

A Mixed-Integer PDE-Constrained Optimization Formulation for Electromagnetic Cloaking

We formulate a mixed-integer partial-differential equation constrained optimization problem for designing an electromagnetic cloak governed by the 2D Helmholtz equation with absorbing boundary conditions. Our formulation is an alternative to the topology optimization formulation of electromagnetic cloaking design. We extend the formulation to include uncertainty with respect to the angle of the incidence wave, and … Read more

Best Principal Submatrix Selection for the Maximum Entropy Sampling Problem: Scalable Algorithms and Performance Guarantees

This paper studies a classic maximum entropy sampling problem (MESP), which aims to select the most informative principal submatrix with a given size out of a covariance matrix from a system. MESP has been widely applied to many areas, including healthcare, power system, manufacturing, data science, etc. Investigating its Lagrangian dual and primal characterization, we … Read more

Computing Technical Capacities in the European Entry-Exit Gas Market is NP-Hard

As a result of its liberalization, the European gas market is organized as an entry-exit system in order to decouple the trading and transport of natural gas. Roughly summarized, the gas market organization consists of four subsequent stages. First, the transmission system operator (TSO) is obliged to allocate so-called maximal technical capacities for the nodes … Read more