A SMART Stochastic Algorithm for Nonconvex Optimization with Applications to Robust Machine Learning

Machine learning theory typically assumes that training data is unbiased and not adversarially generated. When real training data deviates from these assumptions, trained models make erroneous predictions, sometimes with disastrous effects. Robust losses, such as the huber norm are designed to mitigate the effects of such contaminated data, but they are limited to the regression … Read more

Decomposition and Optimization in Constructing Forward Capacity Market Demand Curves

This paper presents an economic framework for designing demand curves in Forward Capacity Market (FCM). Capacity demand curves have been recognized as a way to reduce the price volatility inherited from fixed capacity requirements. However, due to the lack of direct demand bidding in FCM, obtaining demand curves that appropriately reflect load’s willingness to pay … Read more

Low-complexity method for hybrid MPC with local guarantees

Model predictive control problems for constrained hybrid systems are usually cast as mixed-integer optimization problems (MIP). However, commercial MIP solvers are designed to run on desktop computing platforms and are not suited for embedded applications which are typically restricted by limited computational power and memory. To alleviate these restrictions, we develop a novel low-complexity, iterative … Read more

Stochastic and robust optimal operation of energy-efficient building with combined heat and power systems

Energy efficiency and renewable energy become more attractive in smart grid. In order to efficiently reduce global energy usage in building energy systems and to improve local environmental sustainability, it is essential to optimize the operation and the performance of combined heat and power (CHP) systems. In addition, intermittent renewable energy and imprecisely predicted customer … Read more

Convergence rates of moment-sum-of-squares hierarchies for optimal control problems

We study the convergence rate of moment-sum-of-squares hierarchies of semidefinite programs for optimal control problems with polynomial data. It is known that these hierarchies generate polynomial under-approximations to the value function of the optimal control problem and that these under-approximations converge in the $L^1$ norm to the value function as their degree $d$ tends to … Read more

Mixed-Integer Programming for Cycle Detection in Non-reversible Markov Processes

In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to … Read more

A Riemannian conjugate gradient method for optimization on the Stiefel manifold

In this paper we propose a new Riemannian conjugate gradient method for optimization on the Stiefel manifold. We introduce two novel vector transports associated with the retraction constructed by the Cayley transform. Both of them satisfy the Ring-Wirth nonexpansive condition, which is fundamental for convergence analysis of Riemannian conjugate gradient methods, and one of them … Read more

On max-k-sums

The max-$k$-sum of a set of real scalars is the maximum sum of a subset of size $k$, or alternatively the sum of the $k$ largest elements. We study two extensions: First, we show how to obtain smooth approximations to functions that are pointwise max-$k$-sums of smooth functions. Second, we discuss how the max-$k$-sum can … Read more

Branch and Bound based methods to minimize the energy consumed by an electrical vehicle on long travels with slopes

We consider the problem of minimization of the energy consumed by an electrical vehicle performing quite long travels with slopes. The model we address here, takes into account the electrical and mechanical differential equations of the vehicle. This yields a mixed-integer optimal control problem that can be approximated, using a methodology based on some decomposition … Read more

Positioning and construction algorithms for a specific absolute positioning magnetic ruler system

Abstract Absolute positioning magnetic rulers are rulers which calculate the distance of the reading head based just on one reading of a magnetic signal. A new absolute positioning magnetic ruler method which is based on rulers with trapezoidal magnetic poles is considered in this paper. On a fixed position of a ruler, the reading head … Read more