High Detail Stationary Optimization Models for Gas Networks: Validation and Results

Due to strict regulatory rules in combination with complex nonlinear physics, major gas network operators in Germany and Europe face hard planning problems that call for optimization. In part 1 of this paper we have developed a suitable model hierarchy for that purpose. Here we consider the more practical aspects of modeling. We validate individual … Read more

A Flexible Iterative Solver for Nonconvex, Equality-Constrained Quadratic Subproblems

We present an iterative primal-dual solver for nonconvex equality-constrained quadratic optimization subproblems. The solver constructs the primal and dual trial steps from the subspace generated by the generalized Arnoldi procedure used in flexible GMRES (FGMRES). This permits the use of a wide range of preconditioners for the primal-dual system. In contrast with FGMRES, the proposed … Read more

Gas Network Optimization: A comparison of Piecewise Linear Models

Gas network optimization manages the gas transport by minimizing operating costs and fulfilling contracts between consumers and suppliers. This is an NP- hard problem governed by non-convex and nonlinear gas transport functions that can be modeled by mixed integer linear programming (MILP) techniques. Under these methods, piecewise linear functions describe nonlinearities and bi- nary variables … Read more

Optimal scheduling for replacing perimeter guarding unmanned aerial vehicles

Guarding the perimeter of an area in order to detect potential intruders is an important task in a variety of security-related applications. This task can in many circumstances be performed by a set of camera-equipped unmanned aerial vehicles (UAVs). Such UAVs will occasionally require refueling or recharging, in which case they must temporarily be replaced … Read more

Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs

In view of solving nonsmooth and nonconvex problems involving complex constraints (like standard NLP problems), we study general maximization-minimization procedures produced by families of strongly convex sub-problems. Using techniques from semi-algebraic geometry and variational analysis –in particular Lojasiewicz inequality– we establish the convergence of sequences generated by this type of schemes to critical points. The … Read more

The Descriptor Continuous-Time Algebraic Riccati Equation. Numerical Solutions and Some Direct Applications

We investigate here the numerical solution of a special type of descriptor continuous-time Riccati equation which is involved in solving several key problems in robust control, formulated under very general hypotheses. We also give necessary and sufficient existence conditions together with computable formulas for both stabilizing and antistabilizing solutions in terms of the associated matrix … Read more

Convergence Analysis of Primal-Dual Based Methods for Total Variation Minimization with Finite Element Approximation

We consider the total variation minimization model with consistent finite element discretization. It has been shown in the literature that this model can be reformulated as a saddle-point problem and be efficiently solved by the primal-dual method. The convergence for this application of the primal-dual method has also been analyzed. In this paper, we focus … Read more

The robust stabilization problem for discrete-time descriptor systems

We investigate here the robust stabilization problem for the descriptor discrete time systems and build an optimal solution in the case when both the nominal system and the perturbations are given in terms of left coprime factorizations. Moreover our formulas are given straight from the original data, using solely the stabilizing solutions of two Riccati … Read more

Maximal Covering Location Problems on networks with regional demand

Covering problems are well studied in the Operations Research literature under the assumption that both the set of users and the set of potential facilities are finite. In this paper we address the following variant, which leads to a Mixed Integer Nonlinear Program (MINLP): locations of p facilities are sought along the edges of a … Read more

An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming

We present a filter line-search algorithm that does not require inertia information about the linear system to ensure global convergence. The proposed approach performs curvature tests along the search step to ensure descent. This feature permits more modularity in the linear algebra, enabling the use of a wider range of iterative and decomposition strategies. We … Read more