Tightened L0 Relaxation Penalties for Classification

In optimization-based classification model selection, for example when using linear programming formulations, a standard approach is to penalize the L1 norm of some linear functional in order to select sparse models. Instead, we propose a novel integer linear program for sparse classifier selection, generalizing the minimum disagreement hyperplane problem whose complexity has been investigated in … Read more

A Simpler Approach to Matrix Completion

This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candes and Recht, Candes and Tao, and Keshavan, Montanari, and Oh. The reconstruction is accomplished by minimizing the nuclear norm, or sum of the singular … Read more

Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm

We propose a Newton-CG primal proximal point algorithm for solving large scale log-determinant optimization problems. Our algorithm employs the essential ideas of the proximal point algorithm, the Newton method and the preconditioned conjugate gradient solver. When applying the Newton method to solve the inner sub-problem, we find that the log-determinant term plays the role of … Read more

On the Stopping Criterion for Numerical Methods Used to Solve Linear Systems with Additive Gaussian Noise

We consider the inversion of a linear operator with centered Gaussian white noise by MAP estimation with a Gaussian prior distribution on the solution. The actual estimator is computed approximately by a numerical method. We propose a relation between the stationarity measure of this approximate solution to the mean square error of the exact solution. … Read more

SINCO – a greedy coordinate ascent method for sparse inverse covariance selection problem

In this paper, we consider the sparse inverse covariance selection problem which is equivalent to structure recovery of a Markov Network over Gaussian variables. We introduce a simple but efficient greedy algorithm, called {\em SINCO}, for solving the Sparse INverse COvariance problem. Our approach is based on coordinate ascent method which naturally preserves the sparsity … Read more

An Augmented Lagrangian Approach for Sparse Principal Component Analysis

Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To … Read more

Rank-Sparsity Incoherence for Matrix Decomposition

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Such a problem arises in a number of applications in model and system identification, and is NP-hard in general. In this … Read more

The L1-Norm Best-Fit Hyperplane Problem

We formalize an algorithm for solving the L1-norm best-fit hyperplane problem derived using first principles and geometric insights about L1 projection and L1 regression. The procedure follows from a new proof of global optimality and relies on the solution of a small number of linear programs. The procedure is implemented for validation and testing. This … Read more

Convergence Rate of Stochastic Gradient Search in the Case of Multiple and Non-Isolated Minima

The convergence rate of stochastic gradient search is analyzed in this paper. Using arguments based on differential geometry and Lojasiewicz inequalities, tight bounds on the convergence rate of general stochastic gradient algorithms are derived. As opposed to the existing results, the results presented in this paper allow the objective function to have multiple, non-isolated minima, … Read more

Compressed Sensing with Quantized Measurements

We consider the problem of estimating a sparse signal from a set of quantized, Gaussian noise corrupted measurements, where each measurement corresponds to an interval of values. We give two methods for (approximately) solving this problem, each based on minimizing a differentiable convex function plus an l1 regularization term. Using a first order method developed … Read more