An analysis of noise folding for low-rank matrix recovery

Previous work regarding low-rank matrix recovery has concentrated on the scenarios in which the matrix is noise-free and the measurements are corrupted by noise. However, in practical application, the matrix itself is usually perturbed by random noise preceding to measurement. This paper concisely investigates this scenario and evidences that, for most measurement schemes utilized in … Read more

Scheduling jobs with a V-shaped time-dependent processing time

In the field of time-dependent scheduling, a job’s processing time is specified by a function of its start time. While monotonic processing time functions are well-known in the literature, this paper introduces non-monotonic functions with a convex, piecewise-linear V-shape similar to the absolute value function. They are minimum at an ideal start time, which is … Read more

A faster FPTAS for counting two-rowed contingency tables

In this paper we provide a deterministic fully polynomial time approximation scheme (FPTAS) for counting two-rowed contingency tables that is faster than any either deterministic or randomized approximation scheme for this problem known to date. Our FPTAS is derived via a somewhat sophisticated usage of the method of K-approximation sets and functions introduced by Halman … Read more

A gradient type algorithm with backward inertial steps for a nonconvex minimization

We investigate an algorithm of gradient type with a backward inertial step in connection with the minimization of a nonconvex differentiable function. We show that the generated sequences converge to a critical point of the objective function, if a regularization of the objective function satis es the Kurdyka-Lojasiewicz property. Further, we provide convergence rates for the … Read more

An Efficient Linear Programming Based Method for the Influence Maximization Problem in Social Networks

The influence maximization problem (IMP) aims to determine the most influential individuals within a social network. In this study first we develop a binary integer program that approximates the original problem by Monte Carlo sampling. Next, to solve IMP efficiently, we propose a linear programming relaxation based method with a provable worst case bound that … Read more

On a reduction of the weighted induced bipartite subgraph problem to the weighted independent set problem

We study the weighted induced bipartite subgraph problem (WIBSP). The goal of WIBSP is, given a graph and nonnegative weights for the nodes, to find a set W of nodes with the maximum total weight such that a subgraph induced by W is bipartite. WIBSP is also referred as to the graph bipartization problem or … Read more

Scalable Algorithms for the Sparse Ridge Regression

Sparse regression and variable selection for large-scale data have been rapidly developed in the past decades. This work focuses on sparse ridge regression, which enforces the sparsity by use of the L0 norm. We first prove that the continuous relaxation of the mixed integer second order conic (MISOC) reformulation using perspective formulation is equivalent to … Read more

An Approximation Algorithm for Vehicle Routing with Compatibility Constraints

We study a multiple-vehicle routing problem with a minimum makespan objective and compatibility constraints. We provide an approximation algorithm and a nearly-matching hardness of approximation result. We also provide computational results on benchmark instances with diverse sizes showing that the proposed algorithm (i) has a good empirical approximation factor, (ii) runs in a short amount … Read more

A new approximation algorithm for unrelated parallel machine scheduling problem with release dates

In this research, we consider the unrelated parallel machine scheduling problem with release dates. The goal of this scheduling problem is to find an optimal job assignment with minimal sum of weighted completion times. As it is demonstrated in the present paper, this problem is NP-hard in the strong sense. Albeit the computational complexity, which … Read more

Approximation Properties of Sum-Up Rounding in the Presence of Vanishing Constraints

Approximation algorithms like sum-up rounding that allow to compute integer-valued approximations of the continuous controls in a weak$^*$ sense have attracted interest recently. They allow to approximate (optimal) feasible solutions of continuous relaxations of mixed-integer control problems (MIOCPs) with integer controls arbitrarily close. To this end, they use compactness properties of the underlying state equation, … Read more