The Knapsack Problem with Conflict Graphs

We extend the classical 0-1 knapsack problem by introducing disjunctive constraints for pairs of items which are not allowed to be packed together into the knapsack. These constraints are represented by edges of a conflict graph whose vertices correspond to the items of the knapsack problem. Similar conditions were treated in the literature for bin … Read more

Maximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the first constant-factor approximation algorithm for maximizing any … Read more

A Dynamic Programming Framework for Combinatorial Optimization Problems on Graphs with Bounded Pathwidth

In this paper we present an algorithmic framework for solving a class of combinatorial optimization problems on graphs with bounded pathwidth. The problems are NP-hard in general, but solvable in linear time on this type of graphs. The problems are relevant for assessing network reliability and improving the network’s performance and fault tolerance. The main … Read more

Copositive programming motivated bounds on the stability and the chromatic numbers

The Lovász theta number of a graph G can be viewed as a semidefinite programming relaxation of the stability number of G. It has recently been shown that a copositive strengthening of this semidefinite program in fact equals the stability number of G. We introduce a related strengthening of the Lovász theta number toward the … Read more

Hilbert’s Nullstellensatz and an Algorithm for Proving Combinatorial Infeasibility

Systems of polynomial equations over an algebraically-closed field K can be used to concisely model many combinatorial problems. In this way, a combinatorial problem is feasible (e.g., a graph is 3-colorable, hamiltonian, etc.) if and only if a related system of polynomial equations has a solution over K. In this paper, we investigate an algorithm … Read more

Polymatroids and Mean-Risk Minimization in Discrete Optimization

In financial markets high levels of risk are associated with large returns as well as large losses, whereas with lower levels of risk, the potential for either return or loss is small. Therefore, risk management is fundamentally concerned with finding an optimal trade-off between risk and return matching an investor’s risk tolerance. Managing risk is … Read more

Sharing Supermodular Costs

We study cooperative games with supermodular costs. We show that supermodular costs arise in a variety of situations: in particular, we show that the problem of minimizing a linear function over a supermodular polyhedron–a problem that often arises in combinatorial optimization–has supermodular optimal costs. In addition, we examine the computational complexity of the least core … Read more

Revisiting the Greedy Approach to Submodular Set Function Maximization

We consider the problem of maximizing a nondecreasing submodular set function over various constraint structures. Specifically, we explore the performance of the greedy algorithm, and a related variant, the locally greedy algorithm in solving submodular function maximization problems. Most classic results on the greedy algorithm and its variant assume the existence of an optimal polynomial-time … Read more