An Algorithm to Determine the Clique Number of a Split Graph
In this paper, we propose an algorithm to determine the clique number of a split graph. Article Download View An Algorithm to Determine the Clique Number of a Split Graph
In this paper, we propose an algorithm to determine the clique number of a split graph. Article Download View An Algorithm to Determine the Clique Number of a Split Graph
In financial markets high levels of risk are associated with large returns as well as large losses, whereas with lower levels of risk, the potential for either return or loss is small. Therefore, risk management is fundamentally concerned with finding an optimal trade-off between risk and return matching an investor’s risk tolerance. Managing risk is … Read more
We study cooperative games with supermodular costs. We show that supermodular costs arise in a variety of situations: in particular, we show that the problem of minimizing a linear function over a supermodular polyhedron–a problem that often arises in combinatorial optimization–has supermodular optimal costs. In addition, we examine the computational complexity of the least core … Read more
We consider the problem of maximizing a nondecreasing submodular set function over various constraint structures. Specifically, we explore the performance of the greedy algorithm, and a related variant, the locally greedy algorithm in solving submodular function maximization problems. Most classic results on the greedy algorithm and its variant assume the existence of an optimal polynomial-time … Read more
We study the problem of optimizing nonlinear objective functions over matroids presented by oracles or explicitly. Such functions can be interpreted as the balancing of multi-criteria optimization. We provide a combinatorial polynomial time algorithm for arbitrary oracle-presented matroids, that makes repeated use of matroid intersection, and an algebraic algorithm for vectorial matroids. Our work is … Read more
We present a new computer system, called GraPHedron, which uses a polyhedral approach to help the user to discover optimal conjectures in graph theory. We define what should be optimal conjectures and propose a formal framework allowing to identify them. Here, graphs with n nodes are viewed as points in the Euclidian space, whose coordinates … Read more
In the paper we consider the quadratic ssignment problem arising from channel coding in communications where one coefficient matrix is the adjacency matrix of a hypercube in a finite dimensional space. By using the geometric structure of the hypercube, we first show that there exist at least $n$ different optimal solutions to the underlying QAPs. … Read more
In a paper published 1978, McEliece, Rodemich and Rumsey improved Lov\’asz’ bound for the Maximum Clique Problem. This strengthening has become well-known under the name Lov\’asz-Schrijver bound and is usually denoted by $\theta’$. This article now deals with situations where this bound is not exact. To provide instances for which the gap between this bound … Read more
We study Semidefinite Programming, \SDPc relaxations for Sensor Network Localization, \SNLc with anchors and with noisy distance information. The main point of the paper is to view \SNL as a (nearest) Euclidean Distance Matrix, \EDM, completion problem and to show the advantages for using this latter, well studied model. We first show that the current … Read more
We consider k-regular graphs with loops, and study the Lovász theta-numbers and Schrijver theta’-numbers of the graphs that result when the loop edges are removed. We show that the theta-number dominates a recent eigenvalue upper bound on the stability number due to Godsil and Newman [C.D. Godsil and M.W. Newman. Eigenvalue bounds for independent sets. … Read more