Graph Coloring in the Estimation of Sparse Derivative Matrices: Instances and Applications

We describe a graph coloring problem associated with the determination of mathematical derivatives. The coloring instances are obtained as intersection graphs of row partitioned sparse derivative matrices. The size of the graph is dependent on the partition and can be varied between the number of columns and the number of nonzero entries. If solved exactly … Read more

An annotated bibliography of GRASP

This paper presents an annotated bibliography of greedy randomized adaptive search procedures (GRASP). The bibliography is current up to early 2004. The bibliography contains: background material; tutorials and surveys; enhancements to the basic method; hybrid methods; software; parallel GRASP; graph theory; quadratic and other assignment problems; location, layout, and cutting; covering, clustering, packing, and partitioning; … Read more

The Complexity of Maximum Matroid-Greedoid Intersection and Weighted Greedoid Maximization

The maximum intersection problem for a matroid and a greedoid, given by polynomial-time oracles, is shown $NP$-hard by expressing the satisfiability of boolean formulas in $3$-conjunctive normal form as such an intersection. The corresponding approximation problems are shown $NP$-hard for certain approximation performance bounds. Moreover, some natural parameterized variants of the problem are shown $W[P]$-hard. … Read more

Batched Bin Packing

We introduce and study the batched bin packing problem (BBPP), a bin packing problem in which items become available for packing incrementally, one batch at a time. A batched algorithm must pack a batch before the next batch becomes known. A batch may contain several items; the special case when each batch consists of merely … Read more

Introduction to Domination Analysis

In the recently published book on the Traveling Salesman Problem, half of Chapter 6 is devoted to domination analysis (DA) of heuristics for the Traveling Salesman Problem. Another chapter (in preparation) is a detailed overview of the whole area of DA. Both chapters are of considerable length. The purpose of this paper is to give … Read more

Interior Point and Semidefinite Approaches in Combinatorial Optimization

Interior-point methods (IPMs), originally conceived in the context of linear programming have found a variety of applications in integer programming, and combinatorial optimization. This survey presents an up to date account of IPMs in solving NP-hard combinatorial optimization problems to optimality, and also in developing approximation algorithms for some of them. The surveyed approaches include … Read more

Solving the uncapacitated multiple allocation hub location problem by means of a dual-ascent technique

This problem deals with the uncapacitated multiple allocation hub location problem. The dual problem of a four-indexed formulation is considered and a heuristic method, based on a dual-ascent technique, is designed. This heuristic, which is reinforced with several specifical subroutines and does not require any external linear problem solver, is the core tool embedded in … Read more

Solving the Hub Location Problem with Modular Link Capacities

This paper deals with a capacitated hub location problem arising in the design of telecommunications networks. The problem is different from the classical hub location problem in two ways: the cost of using an edge is not linear but stepwise and the capacity of an hub restricts the amount of traffic transiting through the hub … Read more

Boundedness Theorems for the Relaxation Method

A classical theorem by Block and Levin says that certain variants of the relaxation method for solving systems of linear inequalities produce bounded sequences of intermediate solutions even when running on inconsistent input data. Using a new approach, we prove a more general version of this result and answer an old open problem of quantifying … Read more

A Parallel Primal-Dual Interior-Point Method for Semidefinite Programs Using Positive Definite Matrix Completion

A parallel computational method SDPARA-C is presented for SDPs (semidefinite programs). It combines two methods SDPARA and SDPA-C proposed by the authors who developed a software package SDPA. SDPARA is a parallel implementation of SDPA and it features parallel computation of the elements of the Schur complement equation system and a parallel Cholesky factorization of … Read more