New formulation and resolution method for the p-Center problem

The $p$-Center problem consists in locating $p$ facilities among a set of $M$ possible locations and assigning $N$ clients to them in order to minimize the maximum distance between a client and the facility to which he is allocated. We present a new integer linear programming formulation for this Min-Max problem with a polynomial number … Read more

Semidefinite relaxations for Max-Cut

We compare several semidefinite relaxations for the cut polytope obtained by applying the lift and project methods of Lov\’asz and Schrijver and of Lasserre. We show that the tightest relaxation is obtained when aplying the Lasserre construction to the node formulation of the max-cut problem. This relaxation $Q_t(G)$ can be defined as the projection on … Read more

Extending an Algebraic Modeling Language to Support Constraint Programming

We describe extensions to algebraic modeling languages and their solver interfaces that will be needed to take advantage of constraint programming solvers, particularly in the area of combinatorial optimization. CitationTechnical Report, Department of Industrial Engineering and Management Sciences, Northwestern University (2001); based on a shorter version that appeared in the Proceedings of the Third International … Read more

A genetic algorithm for the weight setting problem in OSPF routing

With the growth of the Internet, Internet Service Providers (ISPs) try to meet the increasing traffic demand with new technology and improved utilization of existing resources. Routing of data packets can affect network utilization. Packets are sent along network paths from source to destination following a protocol. Open Shortest Path First (OSPF) is the most … Read more

A Polyhedral Study of the Cardinality Cosntrained Knapsack Problem

A cardinality constrained knapsack problem is a continuous knapsack problem in which no more than a specified number of nonnegative variables are allowed to be positive. This structure occurs, for example, in areas as finance, location, and scheduling. Traditionally, cardinality constraints are modeled by introducing auxiliary 0-1 variables and additional constraints that relate the continuous … Read more

New Benchmark Instances for the Steiner Problem in Graphs

We propose in this work 50 new test instances for the Steiner problem in graphs. These instances are characterized by large integrality gaps and symmetry aspects which make them harder to both exact methods and heuristics than the test problems currently in use for the evaluation and comparison of existing and newly developed algorithms. Our … Read more

Greedy randomized adaptive search procedures

GRASP is a multi-start metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phase. The best overall solution is kept as the result. In this chapter, … Read more

Simple Efficient Solutions for Semidefinite Programming

This paper provides a simple approach for solving a semidefinite program, SDP\@. As is common with many other approaches, we apply a primal-dual method that uses the perturbed optimality equations for SDP, $F_\mu(X,y,Z)=0$, where $X,Z$ are $n \times n$ symmetric matrices and $y \in \Re^n$. However, we look at this as an overdetermined system of … Read more

Anti-matroids

We introduce an anti-matroid as a family $\cal F$ of subsets of a ground set $E$ for which there exists an assignment of weights to the elements of $E$ such that the greedy algorithm to compute a maximal set (with respect to inclusion) in $\cal F$ of minimum weight finds, instead, the unique maximal set … Read more