Partition of a Set of Integers into Subsets with Prescribed Sums

A nonincreasing sequence of positive integers $\langle m_1,m_2,\cdots,m_k \rangle$ is said to be {\em $n$-realizable\/} if the set $I_n=\{ 1,2,\cdots,n\}$ can be partitioned into $k$ mutually disjoint subsets $S_1,S_2,\cdots, S_k$ such that $\sum\limits_{x\in S_i}x=m_i$ for each $1\le i\le k$. In this paper, we will prove that a nonincreasing sequence of positive integers $\langle m_1,m_2,\cdots,m_k\rangle$ is … Read more

Computational study of large-scale p-Median problems

Given a directed graph G(V,A), the p-Median problem consists of determining p nodes (the median nodes) minimizing the total distance from the other nodes of the graph. We present a Branch-and-Cut algorithm yielding provably good solutions for instances up to 3795 nodes (14,402,025 variables). Key ingredients of our approach are: lagrangian relaxation, a simple procedure … Read more

When the greedy algorithm fails

We provide a characterization of the cases when the greedy algorithm may produce the unique worst possible solution for the problem of finding a minimum weight base in a uniform independence system when the weights are taken from a finite range. We apply this theorem to TSP and the minimum bisection problem. The practical message … Read more

Design and analysis of an approximation algorithm for Stackelberg network pricing

We consider the problem of maximizing the revenue raised from tolls set on the arcs of a transportation network, under the constraint that users are assigned to toll-compatible shortest paths. We first prove that this problem is strongly NP-hard. We then provide a polynomial time algorithm with a worst-case precision guarantee of $\frac{1}{2}\log m_T+1$, where … Read more

On counting integral points in a convex rational polytope

Given a convex rational polytope $\Omega(b):=\{x\in\R^n_+\,|\,Ax=b\}$, we consider the function $b\mapsto f(b)$, which counts the nonnegative integral points of $\Omega(b)$. A closed form expression of its $\Z$-transform $z\mapsto \mathcal{F}(z)$ is easily obtained so that $f(b)$ can be computed as the inverse $\Z$-transform of $\mathcal{F}$. We then provide two variants of an inversion algorithm. As a … Read more

On the Representation and Characterization of Fullerene C60

An operation on trivalent graphs leads from the truncated cube to buckminsterfullerene, and C60 is the only fullerene with disjoint pentagons which can be obtained by this method. The construction and the proof emphasize maximal independent sets that contain two fifths of the vertices of trivalent graphs. In the case of C60, these sets define … Read more

Approximation Bounds for Quadratic Maximization with Semidefinite Programming Relaxation

In this paper, we consider a class of quadratic maximization problems. One important instance in that class is the famous quadratic maximization formulation of the max-cut problem studied by Goemans and Williamson. Since the problem is NP-hard in general, following Goemans and Williamson, we apply the approximation method based on the semidefinite programming (SDP) relaxation. … Read more

The stable set problem and the lift-and-project ranks of graphs

We study the lift-and-project procedures for solving combinatorial optimization problems, as described by Lov\’asz and Schrijver, in the context of the stable set problem on graphs. We investigate how the procedures’ performances change as we apply fundamental graph operations. We show that the odd subdivision of an edge and the subdivision of a star operations … Read more

Semidefinite programming and integer programming

We survey how semidefinite programming can be used for finding good approximative solutions to hard combinatorial optimization problems. CitationPreliminary version appeared as Report PNA-R0210, CWI, Amsterdam, April 2002. To appear as Chapter in the Handbook on Discrete Optimization, K. Aardal, G. Nemhauser, R. Weismantel, eds., Elsevier Publishers.ArticleDownload View PDF

A Simple Clique Camouflaging Against Greedy Maximum Clique Heuristics

Taking a small graph, on which the randomized New-Best-In maximum clique heuristic fails to find the maximum clique, we construct on its basis a class of graphs exemplifying the inefficiency of SM greedy heuristics considered by Brockington and Culberson. We show that a 7(k+1)-vertex graph from this class is enough to provide a counterexample for … Read more