A Tutorial on Formulating and Using QUBO Models

The Quadratic Unconstrained Binary Optimization (QUBO) model has gained prominence in recent years with the discovery that it unifies a rich variety of combinatorial optimization problems. By its association with the Ising problem in physics, the QUBO model has emerged as an underpinning of the quantum computing area known as quantum annealing and has become … Read more

Generating irreducible copositive matrices using the stable set problem

In this paper it is considered how graphs can be used to generate copositive matrices, and necessary and sufficient conditions are given for these generated matrices to then be irreducible with respect to the set of positive semidefinite plus nonnegative matrices. This is done through combining the well known copositive formulation of the stable set … Read more

A faster FPTAS for counting two-rowed contingency tables

In this paper we provide a deterministic fully polynomial time approximation scheme (FPTAS) for counting two-rowed contingency tables that is faster than any either deterministic or randomized approximation scheme for this problem known to date. Our FPTAS is derived via a somewhat sophisticated usage of the method of K-approximation sets and functions introduced by Halman … Read more

A Linear Programming Based Approach to the Steiner Tree Problem with a Fixed Number of Terminals

We present a set of integer programs (IPs) for the Steiner tree problem with the property that the best solution obtained by solving all, provides an optimal Steiner tree. Each IP is polynomial in the size of the underlying graph and our main result is that the linear programming (LP) relaxation of each IP is … Read more

A New Extended Formulation with Valid Inequalities for the Capacitated Concentrator Location Problem

In this paper, we first present a new extended formulation of the Capacitated Concentrator Location Problem (CCLP) using the notion of cardinality of terminals assigned to a concentrator location. The disaggregated formulation consists of O(mn2) variables and constraints, where m denotes the number of concentrators and n the number of terminals. An immediate benefit of … Read more

On prime and minimal representations of a face of a polyhedron

In this paper, a new method for determining all minimal representations of a face of a polyhedron is proposed. A main difficulty for determining prime and minimal representations of a face is that the deletion of one redundant constraint can change the redundancy of other constraints. To reduce computational efforts in finding all minimal representations … Read more

The Benefits of Transfers in Crowdsourced Pickup-and-Delivery Systems

Rapid urban growth, the increasing importance of e-commerce and high consumer service expectations have given rise to new and innovative models for freight delivery within urban environments. Crowdsourced solutions – where drivers are not employed by a carrier but occasionally offer their services through on-line platforms and are contracted as required by carriers – are … Read more

A gradient type algorithm with backward inertial steps for a nonconvex minimization

We investigate an algorithm of gradient type with a backward inertial step in connection with the minimization of a nonconvex differentiable function. We show that the generated sequences converge to a critical point of the objective function, if a regularization of the objective function satis es the Kurdyka-Lojasiewicz property. Further, we provide convergence rates for the … Read more

A Tutorial on Formulating QUBO Models

The field of Combinatorial Optimization (CO) is one of the most important areas in the general field of optimization, with important applications found in every industry, including both the private and public sectors. It is also one of the most active research areas pursued by the research communities of Operations Research, Computer Science, and Analytics … Read more

Strong Mixed-Integer Formulations for Power System Islanding and Restoration

The Intentional Controlled Islanding (ICI) and the Black Start Allocation (BSA) are two examples of problems in the power systems literature that have been formulated as Mixed Integer Programs (MIPs). A key consideration in both of these problems is that each island must have at least one energized generator. In this paper, we provide three … Read more