The polytope of binary sequences with bounded variation

We investigate the problem of optimizing a linear objective function over the set of all binary vectors of length n with bounded variation, where the latter is defined as the number of pairs of consecutive entries with different value. This problem arises naturally in many applications, e.g., in unit commitment problems or when discretizing binary … Read more

Multiple-Periods Locally-Facet-Based MIP Formulations for the Unit Commitment Problem

The thermal unit commitment (UC) problem has historically been formulated as a mixed integer quadratic programming (MIQP), which is difficult to solve efficiently, especially for large-scale systems. The tighter characteristic reduces the search space, therefore, as a natural consequence, significantly reduces the computational burden. In literatures, many tightened formulations for a single unit with parts … Read more

Simple odd beta-cycle inequalities for binary polynomial optimization

We consider the multilinear polytope which arises naturally in binary polynomial optimization. Del Pia and Di Gregorio introduced the class of odd beta-cycle inequalities valid for this polytope, showed that these generally have Chvátal rank 2 with respect to the standard relaxation and that, together with flower inequalities, they yield a perfect formulation for cycle … Read more

On Polytopes with Linear Rank with respect to Generalizations of the Split Closure

In this paper we study the rank of polytopes contained in the 0-1 cube with respect to $t$-branch split cuts and $t$-dimensional lattice cuts for a fixed positive integer $t$. These inequalities are the same as split cuts when $t=1$ and generalize split cuts when $t > 1$. For polytopes contained in the $n$-dimensional 0-1 … Read more

Polyhedral Analysis of a Polytope from a Service Center Location Problem with a Special Decision-Dependent Customer Demand

This paper establishes and analyzes a service center location model with a simple but novel decision-dependent demand induced from a maximum attraction principle. The model formulations are investigated in the distributionally-robust optimization framework for the capacitated and uncapacitated cases. A statistical model that is based on the maximum attraction principle for estimating customer demand and … Read more

On the Polyhedrality of the Chvatal-Gomory Closure

In this paper, we provide an equivalent condition for the Chvatal-Gomory (CG) closure of a closed convex set to be finitely-generated. Using this result, we are able to prove that, for any closed convex set that can be written as the Minkowski sum of a compact convex set and a closed convex cone, its CG … Read more

Algorithms for the Clique Problem with Multiple-Choice Constraints under a Series-Parallel Dependency Graph

The clique problem with multiple-choice constraints (CPMC), i.e. the problem of finding a k-clique in a k-partite graph with known partition, occurs as a substructure in many real-world applications, in particular scheduling and railway timetabling. Although CPMC is NP-complete in general, it is known to be solvable in polynomial time when the so-called dependency graph … Read more

Total Coloring and Total Matching: Polyhedra and Facets

A total coloring of a graph G = (V, E) is an assignment of colors to vertices and edges such that neither two adjacent vertices nor two incident edges get the same color, and, for each edge, the end-points and the edge itself receive a different color. Any valid total coloring induces a partition of … Read more

Strong valid inequalities for a class of concave submodular minimization problems under cardinality constraints

We study the polyhedral convex hull structure of a mixed-integer set which arises in a class of cardinality-constrained concave submodular minimization problems. This class of problems has an objective function in the form of $f(a^\top x)$, where $f$ is a univariate concave function, $a$ is a non-negative vector, and $x$ is a binary vector of … Read more

Set characterizations and convex extensions for geometric convex-hull proofs

In the present work, we consider Zuckerberg’s method for geometric convex-hull proofs introduced in [Geometric proofs for convex hull defining formulations, Operations Research Letters 44(5), 625–629 (2016)]. It has only been scarcely adopted in the literature so far, despite the great flexibility in designing algorithmic proofs for the completeness of polyhedral descriptions that it offers. … Read more