Stochastic Programming with Equilibrium Constraints

In this paper we discuss here-and-now type stochastic programs with equilibrium constraints. We give a general formulation of such problems and study their basic properties such as measurability and continuity of the corresponding integrand functions. We also discuss consistency and rates of convergence of sample average approximations of such stochastic problems. Citation School of Industrial … Read more

GLOBAL CONVERGENCE OF AN ELASTIC MODE APPROACH FOR A CLASS OF MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

We prove that any accumulation point of an elastic mode approach, applied to the optimization of a mixed P variational inequality, that approximately solves the relaxed subproblems is a C-stationary point of the problem of optimizing a parametric mixed P variational inequality. If, in addition, the accumulation point satis es the MPCC-LICQ constraint quali cation and if … Read more

ON USING THE ELASTIC MODE IN NONLINEAR PROGRAMMING APPROACHES TO MATHEMATICALPROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

We investigate the possibility of solving mathematical programs with complementarity constraints (MPCCs) using algorithms and procedures of smooth nonlinear programming. Although MPCCs do not satisfy a constraint qualification, we establish sucient conditions for their Lagrange multiplier set to be nonempty. MPCCs that have nonempty Lagrange multiplier sets and that satisfy the quadratic growth condition can … Read more

OPTIMIZATION-BASED SIMULATION OF NONSMOOTH RIGID MULTIBODY DYNAMICS

We present a time-stepping method to simulate rigid multibody dynamics with inelastic collision, contact, and friction. The method progresses with fixed time step without backtracking for collision and solves at every step a strictly convex quadratic program. We prove that a solution sequence of the method converges to the solution of a measure differential inclusion. … Read more

Necessary and Sufficient Optimality Conditions for Mathematical Programs with Equilibrium Constraints

In this paper we consider a mathematical program with equilibrium constraints (MPEC) formulated as a mathematical program with complementarity constraints. Various stationary conditions for MPECs exist in literature due to different reformulations. We give a simple proof to the M-stationary condition and show that it is sufficient or locally sufficient for optimality under some MPEC … Read more

Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem

A new formulation is presented for the three-dimensional incremental quasi-static problems with unilateral frictional contact. Under the assumptions of small rotations and small strains, a Second-Order Cone Linear omplementarity Problem (SOCLCP) is formulated, which consists of complementarity conditions defined by the bilinear functions and the second-order cone constraints. The equilibrium configurations are obtained by using … Read more

On the Global Minimization of the Value-at-Risk

In this paper, we consider the nonconvex minimization problem of the value-at-risk (VaR) that arises from financial risk analysis. By considering this problem as a special linear program with linear complementarity constraints (a bilevel linear program to be more precise), we develop upper and lower bounds for the minimum VaR and show how the combined … Read more

Some Properties of Regularization and Penalization Schemes for MPECs

Some properties of regularized and penalized nonlinear programming formulations of mathematical programs with equilibrium constraints (MPECs) are described. The focus is on the properties of these formulations near a local solution of the MPEC at which strong stationarity and a second-order sufficient condition are satisfied. In the regularized formulations, the complementarity condition is replaced by … Read more

Numerical Issues and Influences in the Design of Algebraic Modeling Languages for Optimization

This paper draws from our experience in developing the AMPL modeling language, to show where numerical issues have been crucial to modeling language design and where modeling language advances have strongly influenced the design of solvers. Citation Proceedings of the 20th Biennial Conference on Numerical Analysis, Dundee, Scotland, D.F. Griffiths and G.A. Watson, eds., University … Read more

Interior-Point Algorithms, Penalty Methods and Equilibrium Problems

In this paper we consider the question of solving equilibrium problems—formulated as complementarity problems and, more generally, mathematical programs with equilibrium constraints (MPEC’s)—as nonlinear programs, using an interior-point approach. These problems pose theoretical difficulties for nonlinear solvers, including interior-point methods. We examine the use of penalty methods to get around these difficulties, present an example … Read more