A subgradient splitting algorithm for optimization on nonpositively curved metric spaces

Many of the primal ingredients of convex optimization extend naturally from Euclidean to Hadamard spaces — nonpositively curved metric spaces like Euclidean, Hilbert, and hyperbolic spaces, metric trees, and more general CAT(0) cubical complexes. Linear structure, however, and the duality theory it supports are absent. Nonetheless, we introduce a new type of subgradient for convex … Read more

Inexact FISTA-like Methods with Adaptive Backtracking

Accelerated proximal gradient methods have become a useful tool in large-scale convex optimization, specially for variational regularization with non-smooth priors. Prevailing convergence analysis considers that users can perform the proximal and the gradient steps exactly. Still, in some practical applications, the proximal or the gradient steps must be computed inexactly, which can harm convergence speed … Read more

Addressing Estimation Errors through Robust Portfolio Optimization

It is well known that the performance of the classical Markowitz model for portfolio optimization is extremely sensitive to estimation errors on the expected asset returns. Robust optimization mitigates this issue. We focus on ellipsoidal uncertainty sets around a point estimate of the expected asset returns. An important issue is the choice of the parameters … Read more

An inertial Riemannian gradient ADMM for nonsmooth manifold optimization

The Alternating Direction Method of Multipliers (ADMM) is widely recognized for its efficiency in solving separable optimization problems. However, its application to optimization on Riemannian manifolds remains a significant challenge. In this paper, we propose a novel inertial Riemannian gradient ADMM (iRG-ADMM) to solve Riemannian optimization problems with nonlinear constraints. Our key contributions are as … Read more

Accelerating Proximal Gradient Descent via Silver Stepsizes

Surprisingly, recent work has shown that gradient descent can be accelerated without using momentum–just by judiciously choosing stepsizes. An open question raised by several papers is whether this phenomenon of stepsize-based acceleration holds more generally for constrained and/or composite convex optimization via projected and/or proximal versions of gradient descent. We answer this in the affirmative … Read more

Acceleration by Random Stepsizes: Hedging, Equalization, and the Arcsine Stepsize Schedule

We show that for separable convex optimization, random stepsizes fully accelerate Gradient Descent. Specifically, using inverse stepsizes i.i.d. from the Arcsine distribution improves the iteration complexity from $O(k)$ to $O(k^{1/2})$, where $k$ is the condition number. No momentum or other algorithmic modifications are required. This result is incomparable to the (deterministic) Silver Stepsize Schedule which … Read more

Reduced Sample Complexity in Scenario-Based Control System Design via Constraint Scaling

The scenario approach is widely used in robust control system design and chance-constrained optimization, maintaining convexity without requiring assumptions about the probability distribution of uncertain parameters. However, the approach can demand large sample sizes, making it intractable for safety-critical applications that require very low levels of constraint violation. To address this challenge, we propose a … Read more

Jordan and isometric cone automorphisms in Euclidean Jordan algebras

Every symmetric cone K arises as the cone of squares in a Euclidean Jordan algebra V. As V is a real inner-product space, we may denote by Isom(V) its group of isometries. The groups JAut(V) of its Jordan-algebra automorphisms and Aut(K) of the linear cone automorphisms are then related. For certain inner products, JAut(V) = … Read more

Some new accelerated and stochastic gradient descent algorithms based on locally Lipschitz gradient constants

In this paper, we revisit the recent stepsize applied for the gradient descent scheme which is called NGD proposed by [Hoai et al., A novel stepsize for gradient descent method, Operations Research Letters (2024) 53, doi: 10.1016/j.orl.2024.107072]. We first investigate NGD stepsize with two well-known accelerated techniques which are Heavy ball and Nesterov’s methods. In … Read more

Gradient Methods with Online Scaling

We introduce a framework to accelerate the convergence of gradient-based methods with online learning. The framework learns to scale the gradient at each iteration through an online learning algorithm and provably accelerates gradient-based methods asymptotically. In contrast with previous literature, where convergence is established based on worst-case analysis, our framework provides a strong convergence guarantee … Read more