An iterative process for the feasibility-seeking problem with sets that are unions of convex sets

In this paper we deal with the feasibility-seeking problem for unions of convex sets (UCS) sets and propose an iterative process for its solution. Renewed interest in this problem stems from the fact that it was recently discovered to serve as a modeling approach in fields of applications and from the ongoing recent research efforts … Read more

Extending Exact SDP Relaxations of Quadratically Constrained Quadratic Programs

The semidefinite (SDP) relaxation of a quadratically constrained quadratic program (QCQP) is called exact if it has a rank-$1$ optimal solution corresponding to a QCQP optimal solution. Given an arbitrary QCQP whose SDP relaxation is exact, this paper investigates incorporating additional quadratic inequality constraints while maintaining the exactness of the SDP relaxation of the resulting … Read more

Local Linear Convergence of the Alternating Direction Method of Multipliers for Semidefinite Programming under Strict Complementarity

We investigate the local linear convergence properties of the Alternating Direction Method of Multipliers (ADMM) when applied to Semidefinite Programming (SDP). A longstanding belief suggests that ADMM is only capable of solving SDPs to moderate accuracy, primarily due to its sublinear worst-case complexity and empirical observations of slow convergence. We challenge this notion by introducing … Read more

A Rank-One-Update Method for the Training of Support Vector Machines

This paper considers convex quadratic programs associated with the training of support vector machines (SVM). Exploiting the special structure of the SVM problem a new type of active set method with long cycles and stable rank-one-updates is proposed and tested (CMU: cycling method with updates). The structure of the problem allows for a repeated simple … Read more

A Universally Optimal Primal-Dual Method for Minimizing Heterogeneous Compositions

This paper proposes a universal, optimal algorithm for convex minimization problems of the composite form $g_0(x)+h(g_1(x),\dots, g_m(x)) + u(x)$. We allow each $g_j$ to independently range from being nonsmooth Lipschitz to smooth, from convex to strongly convex, described by notions of H\”older continuous gradients and uniform convexity. Note that, although the objective is built from … Read more

Interior-point algorithms with full Newton steps for nonsymmetric convex conic optimization

We design and analyze primal-dual, feasible interior-point algorithms (IPAs) employing full Newton steps to solve convex optimization problems in standard conic form. Unlike most nonsymmetric cone programming methods, the algorithms presented in this paper require only a logarithmically homogeneous self-concordant barrier (LHSCB) of the primal cone, but compute feasible and \(\varepsilon\)-optimal solutions to both the … Read more

Provable and Practical Online Learning Rate Adaptation with Hypergradient Descent

This paper investigates the convergence properties of the hypergradient descent method (HDM), a 25-year-old heuristic originally proposed for adaptive stepsize selection in stochastic first-order methods. We provide the first rigorous convergence analysis of HDM using the online learning framework of [Gao24] and apply this analysis to develop new state-of-the-art adaptive gradient methods with empirical and … Read more

Mean and variance estimation complexity in arbitrary distributions via Wasserstein minimization

Parameter estimation is a fundamental challenge in machine learning, crucial for tasks such as neural network weight fitting and Bayesian inference. This paper focuses on the complexity of estimating translation μ∈R^l and shrinkage σ∈R++ parameters for a distribution of the form (1/sigma^l) f_0((x−μ)/σ), where f_0 is a known density in R^l given n samples. We … Read more

A necessary condition for the guarantee of the superiorization method

We study a method that involves principally convex feasibility-seeking and makes secondary efforts of objective function value reduction. This is the well-known superiorization method (SM), where the iterates of an asymptotically convergent iterative feasibility-seeking algorithm are perturbed by objective function nonascent steps. We investigate the question under what conditions a sequence generated by an SM … Read more