Convex analysis for composite functions without K-convexity

Composite functions have been studied for over 40 years and appear in a wide range of optimization problems. Convex analysis of these functions focuses on (i) conditions for convexity of the function based on properties of its components, (ii) formulas for the convex conjugate of the function based on those of its components and (iii) … Read more

Convex duality contracts for production-grade mathematical optimization

Deploying mathematical optimization in autonomous production systems requires precise contracts for objects returned by an optimization solver. Unfortunately, conventions on dual solution and infeasibility certificates (rays) vary widely across solvers and classes of problems. This paper presents the theoretical framework used by MathOpt (a domain-specific language developed and used at Google) to unify these notions. … Read more

Asymptotically tight Lagrangian dual of smooth nonconvex problems via improved error bound of Shapley-Folkman Lemma

In convex geometry, the Shapley–Folkman Lemma asserts that the nonconvexity of a Minkowski sum of $n$-dimensional bounded nonconvex sets does not accumulate once the number of summands exceeds the dimension $n$, and thus the sum becomes approximately convex. Originally published by Starr in the context of quasi-equilibrium in nonconvex market models in economics, the lemma … Read more

Non-Convex Self-Concordant Functions: Practical Algorithms and Complexity Analysis

We extend the standard notion of self-concordance to non-convex optimization and develop a family of second-order algorithms with global convergence guarantees. In particular, two function classes – weakly self-concordant functions and F-based self-concordant functions – generalize the self-concordant framework beyond convexity, without assuming the Lipschitz continuity of the gradient or Hessian. For these function classes, … Read more

Iteration complexity of the Difference-of-Convex Algorithm for unconstrained optimization: a simple proof

We propose a simple proof of the worst-case iteration complexity for the Difference of Convex functions Algorithm (DCA) for unconstrained minimization, showing that the global rate of convergence of the norm of the objective function’s gradients at the iterates converge to zero like $o(1/k)$. A small example is also provided indicating that the rate cannot … Read more

A Majorization-Minimization approach for multiclass classification in a big data scenario

This work presents a novel optimization approach for training linear classifiers in multiclass classification tasks, when focusing on a regularized and smooth Weston-Watkins support vector machine (SVM) model. We propose a Majorization-Minimization (MM) algorithm to solve the resulting, Lipschitz-differentiable, optimization problem. To enhance scalability of the algorithm when tackling large datasets, we introduce an incremental … Read more

A speed up strategy for gradient methods

In this paper, we propose a new acceleration strategy for gradient-based methods applied to strictly convex Quadratic Programming (QP) problems. The strategy consists in performing, at selected iterations, minimization steps along alternative descent directions or even within low-dimensional affine subspaces. In particular, considering the contribution of the linear and quadratic part of the objective function … Read more

Primal-dual resampling for solution validation in convex stochastic programming

Suppose we wish to determine the quality of a candidate solution to a convex stochastic program in which the objective function is a statistical functional parameterized by the decision variable and known deterministic constraints may be present. Inspired by stopping criteria in primal-dual and interior-point methods, we develop cancellation theorems that characterize the convergence of … Read more

Facial reduction for nice (and non-nice) convex programs

Consider the primal problem of minimizing the sum of two closed proper convex functions \(f\) and \(g\). If the relative interiors of the domains of \(f\) and \(g\) intersect, then the primal problem and its corresponding Fenchel dual satisfy strong duality. When these relative interiors fail to intersect, pathologies and numerical difficulties may occur. In … Read more

An Elementary Proof of the Near Optimality of LogSumExp Smoothing

We consider the design of smoothings of the (coordinate-wise) max function in $\mathbb{R}^d$ in the infinity norm. The LogSumExp function $f(x)=\ln(\sum^d_i\exp(x_i))$ provides a classical smoothing, differing from the max function in value by at most $\ln(d)$. We provide an elementary construction of a lower bound, establishing that every overestimating smoothing of the max function must … Read more