Deep Neural Network Structures Solving Variational Inequalities

We propose a novel theoretical framework to investigate deep neural networks using the formalism of proximal fixed point methods for solving variational inequalities. We first show that almost all activation functions used in neural networks are actually proximity operators. This leads to an algorithmic model alternating firmly nonexpansive and linear operators. We derive new results … Read more

A proximal ADMM with the Broyden family for Convex Optimization Problems

Alternating direction methods of multipliers (ADMM) have been well studied and effectively used in various application fields. The classical ADMM must solve two subproblems exactly at each iteration. To overcome the difficulty of computing the exact solution of the subproblems, some proximal terms are added to the subproblems. Recently, Gu and Yamashita studied a special … Read more

The primal-dual hybrid gradient method reduces to a primal method for linearly constrained optimization problems

In this work, we show that for linearly constrained optimization problems the primal-dual hybrid gradient algorithm, analyzed by Chambolle and Pock [3], can be written as an entirely primal algorithm. This allows us to prove convergence of the iterates even in the degenerate cases when the linear system is inconsistent or when the strong duality … Read more

Asynchronous Sequential Inertial Iterations for Common Fixed Points Problems with an Application to Linear Systems

The common fixed points problem requires finding a point in the intersection of fixed points sets of a finite collection of operators. Quickly solving problems of this sort is of great practical importance for engineering and scientific tasks (e.g., for computed tomography). Iterative methods for solving these problems often employ a Krasnosel’skii-Mann type iteration. We … Read more

Accelerated Bregman Proximal Gradient Methods for Relatively Smooth Convex Optimization

We consider the problem of minimizing the sum of two convex functions: one is differentiable and relatively smooth with respect to a reference convex function, and the other can be nondifferentiable but simple to optimize. The relatively smooth condition is much weaker than the standard assumption of uniform Lipschitz continuity of the gradients, thus significantly … Read more

Positive semidefinite matrix approximation with a trace constraint

We propose an efficient algorithm to solve positive a semidefinite matrix approximation problem with a trace constraint. Without constraints, it is well known that positive semidefinite matrix approximation problem can be easily solved by one-time eigendecomposition of a symmetric matrix. In this paper, we confirmed that one-time eigendecomposition is also sufficient even if a trace … Read more

Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization

Block-coordinate descent (BCD) is a popular framework for large-scale regularized optimization problems with block-separable structure. Existing methods have several limitations. They often assume that subproblems can be solved exactly at each iteration, which in practical terms usually restricts the quadratic term in the subproblem to be diagonal, thus losing most of the benefits of higher-order … Read more

Generalized Stochastic Frank-Wolfe Algorithm with Stochastic “Substitute” Gradient for Structured Convex Optimization

The stochastic Frank-Wolfe method has recently attracted much general interest in the context of optimization for statistical and machine learning due to its ability to work with a more general feasible region. However, there has been a complexity gap in the guaranteed convergence rate for stochastic Frank-Wolfe compared to its deterministic counterpart. In this work, … Read more

Minimizing convex quadratics with variable precision Krylov methods

Iterative algorithms for the solution of convex quadratic optimization problems are investigated, which exploit inaccurate matrix-vector products. Theoretical bounds on the performance of a Conjugate Gradients and a Full-Orthormalization methods are derived, the necessary quantities occurring in the theoretical bounds estimated and new practical algorithms derived. Numerical experiments suggest that the new methods have significant … Read more

The Cyclic Douglas-Rachford Algorithm with r-sets-Douglas-Rachford Operators

The Douglas-Rachford (DR) algorithm is an iterative procedure that uses sequential reflections onto convex sets and which has become popular for convex feasibility problems. In this paper we propose a structural generalization that allows to use r-sets-DR operators in a cyclic fashion. We prove convergence and present numerical illustrations of the potential advantage of such … Read more