Generalization of the primal and dual affine scaling algorithms

We obtain a class of primal ane scaling algorithms which generalize some known algorithms. This class, depending on a r-parameter, is constructed through a family of metrics generated by ��r power, r  1, of the diagonal iterate vector matrix. We prove the so-called weak convergence of the primal class for nondegenerate linearly constrained convex … Read more

Approximating K-means-type clustering via semidefinite programming

One of the fundamental clustering problems is to assign $n$ points into $k$ clusters based on the minimal sum-of-squares(MSSC), which is known to be NP-hard. In this paper, by using matrix arguments, we first model MSSC as a so-called 0-1 semidefinite programming (SDP). We show that our 0-1 SDP model provides an unified framework for … Read more

A Perturbed Gradient Algorithm in Hilbert Spaces

We propose a perturbed gradient algorithm with stochastic noises to solve a general class of optimization problems. We provide a convergence proof for this algorithm, under classical assumptions on the descent direction, and new assumptions on the stochastic noises. Instead of requiring the stochastic noises to correspond to martingale increments, we only require these noises … Read more

A Case Study of Joint Online Truck Scheduling and Inventory Management for Multiple Warehouses

For a real world problem — transporting pallets between warehouses in order to guarantee sufficient supply for known and additional stochastic demand — we propose a solution approach via convex relaxation of an integer programming formulation, suitable for online optimization. The essential new element linking routing and inventory management is a convex piecewise linear cost … Read more

Rigorous Error Bounds for the Optimal Value in Semidefinite Programming

A wide variety of problems in global optimization, combinatorial optimization as well as systems and control theory can be solved by using linear and semidefinite programming. Sometimes, due to the use of floating point arithmetic in combination with ill-conditioning and degeneracy, erroneous results may be produced. The purpose of this article is to show how … Read more

Rebalancing an Investment Portfolio in the Presence of Convex Transaction Costs

The inclusion of transaction costs is an essential element of any realistic portfolio optimization. In this paper, we consider an extension of the standard portfolio problem in which convex transaction costs are incurred to rebalance an investment portfolio. In particular, we consider linear, piecewise linear, and quadratic transaction costs. The Markowitz framework of mean-variance efficiency … Read more

On the Minimum Volume Covering Ellipsoid of Ellipsoids

We study the problem of computing a $(1+\eps)$-approximation to the minimum volume covering ellipsoid of a given set $\cS$ of the convex hull of $m$ full-dimensional ellipsoids in $\R^n$. We extend the first-order algorithm of Kumar and \Yildirim~that computes an approximation to the minimum volume covering ellipsoid of a finite set of points in $\R^n$, … Read more

Set Intersection Theorems and Existence of Optimal Solutions

The question of nonemptiness of the intersection of a nested sequence of closed sets is fundamental in a number of important optimization topics, including the existence of optimal solutions, the validity of the minimax inequality in zero sum games, and the absence of a duality gap in constrained optimization. We introduce the new notion of … Read more

Joint minimization with alternating Bregman proximity operators

A systematic study of the proximity properties of Bregman distances is carried out. This investigation leads to the introduction of a new type of proximity operator which complements the usual Bregman proximity operator. We establish key properties of these operators and utilize them to devise a new alternating procedure for solving a broad class of … Read more