Convergence of a hybrid projection-proximal point algorithm coupled with approximation methods in convex optimization

In order to minimize a closed convex function that is approximated by a sequence of better behaved functions, we investigate the global convergence of a generic diagonal hybrid algorithm, which consists of an inexact relaxed proximal point step followed by a suitable orthogonal projection onto a hyperplane. The latter permits to consider a fixed relative … Read more

A New Conjugate Gradient Algorithm Incorporating Adaptive Ellipsoid Preconditioning

The conjugate gradient (CG) algorithm is well-known to have excellent theoretical properties for solving linear systems of equations $Ax = b$ where the $n\times n$ matrix $A$ is symmetric positive definite. However, for extremely ill-conditioned matrices the CG algorithm performs poorly in practice. In this paper, we discuss an adaptive preconditioning procedure which improves the … Read more

Classical Simplex Methods for Linear Programming and Their Developments

This paper presents a new primal dual simplex method and investigates the duality formation implying in classical simplex methods. We reviews classical simplex methods for linear programming problems and give a detail discussion for the relation between modern and classical algorithms. The two modified versions are present. The advantages of the new algorithms are simplicity … Read more

Faster approximation algorithms for packing and covering problems

We adapt a method due to Nesterov so as to obtain an algorithm for solving block-angular fractional packing or covering problems to relative tolerance epsilon, while using a number of iterations that grows polynomially in the size of the problem and whose dependency on epsilon is proportional to 1/epsilon. CitationCORC report TR-2004-09, Computational Optimization Research … Read more

Steered sequential projections for the inconsistent convex feasibility problem

We study a steered sequential gradient algorithm which minimizes the sum of convex functions by proceeding cyclically in the directions of the negative gradients of the functions and using steered step-sizes. This algorithm is applied to the convex feasibility problem by minimizing a proximity function which measures the sum of the Bregman distances to the … Read more

Invariance and efficiency of convex representations

We consider two notions for the representations of convex cones: $G$-representation and lifted-$G$-representation. The former represents a convex cone as a slice of another; the latter allows in addition, the usage of auxiliary variables in the representation. We first study the basic properties of these representations. We show that some basic properties of convex cones … Read more

Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms

The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumor as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighboring intensities. Accurately … Read more

A new notion of weighted centers for semidefinite programming

The notion of weighted centers is essential in V-space interior-point algorithms for linear programming. Although there were some successes in generalizing this notion to semidefinite programming via weighted center equations, we still do not have a generalization that preserves two important properties — 1) each choice of weights uniquely determines a pair of primal-dual weighted … Read more

Hyperbolic Programs, and Their Derivative Relaxations

We study the algebraic and facial structures of hyperbolic programs, and examine natural relaxations of hyperbolic programs, the relaxations themselves being hyperbolic programs. CitationTR 1406, School of Operations Research, Cornell University, Ithaca, NY 14853, U.S., 3/04ArticleDownload View PDF

Dual Convergence of the Proximal Point Method with Bregman Distances for Linear Programming

In this paper we consider the proximal point method with Bregman distance applied to linear programming problems, and study the dual sequence obtained from the optimal multipliers of the linear constraints of each subproblem. We establish the convergence of this dual sequence, as well as convergence rate results for the primal sequence, for a suitable … Read more