On the abs-polynomial expansion of piecewise smooth functions

Tom Streubel has observed that for functions in abs-normal form, generalized Taylor expansions of arbitrary order $\bd \!- \!1$ can be generated by algorithmic piecewise differentiation. Abs-normal form means that the real or vector valued function is defined by an evaluation procedure that involves the absolute value function $|\cdot|$ apart from arithmetic operations and $\bd$ … Read more

Analysis of Energy Markets Modeled as Equilibrium Problems with Equilibrium Constraints

Equilibrium problems with equilibrium constraints are challenging both theoretically and computationally. However, they are suitable/adequate modeling formulations in a number of important areas, such as energy markets, transportation planning, and logistics. Typically, these problems are characterized as bilevel Nash-Cournot games. For instance, determin- ing the equilibrium price in an energy market involves top-level decisions of … Read more

Characterization of an Anomalous Behavior of a Practical Smoothing Technique

A practical smoothing method was analyzed and tested against state-of-the-art solvers for some non-smooth optimization problems in [BSS20a; BSS20b]. This method can be used to smooth the value functions and solution mappings of fully parameterized convex problems under mild conditions. In general, the smoothing of the value function lies from above the true value function … Read more

The block mutual coherence property condition for signal recovery

Compressed sensing shows that a sparse signal can stably be recovered from incomplete linear measurements. But, in practical applications, some signals have additional structure, where the nonzero elements arise in some blocks. We call such signals as block-sparse signals. In this paper, the $\ell_2/\ell_1-\alpha\ell_2$ minimization method for the stable recovery of block-sparse signals is investigated. … Read more

Behavior of Limited Memory BFGS when Applied to Nonsmooth Functions and their Nesterov Smoothings

The motivation to study the behavior of limited-memory BFGS (L-BFGS) on nonsmooth optimization problems is based on two empirical observations: the widespread success of L-BFGS in solving large-scale smooth optimization problems, and the remarkable effectiveness of the full BFGS method in solving small to medium-sized nonsmooth optimization problems, based on using a gradient, not a … Read more

Manifold Identification for Ultimately Communication-Efficient Distributed Optimization

This work proposes a progressive manifold identification approach for distributed optimization with sound theoretical justifications to greatly reduce both the rounds of communication and the bytes communicated per round for partly-smooth regularized problems such as the $\ell_1$- and group-LASSO-regularized ones. Our two-stage method first uses an inexact proximal quasi-Newton method to iteratively identify a sequence … Read more

Gradient Sampling Methods with Inexact Subproblem Solves and Gradient Aggregation

Gradient sampling (GS) has proved to be an effective methodology for the minimization of objective functions that may be nonconvex and/or nonsmooth. The most computationally expensive component of a contemporary GS method is the need to solve a convex quadratic subproblem in each iteration. In this paper, a strategy is proposed that allows the use … Read more

Decomposition Algorithms for Some Deterministic and Two-Stage Stochastic Single-Leader Multi-Follower Games

We consider a certain class of hierarchical decision problems that can be viewed as single-leader multi-follower games, and be represented by a virtual market coordinator trying to set a price system for traded goods, according to some criterion that balances supply and demand. The objective function of the market coordinator involves the decisions of many … Read more

Stochastic Variance-Reduced Prox-Linear Algorithms for Nonconvex Composite Optimization

We consider minimization of composite functions of the form $f(g(x))+h(x)$, where $f$ and $h$ are convex functions (which can be nonsmooth) and $g$ is a smooth vector mapping. In addition, we assume that $g$ is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose … Read more

Openness, Holder metric regularity and Holder continuity properties of semialgebraic set-valued maps

Given a semialgebraic set-valued map $F \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ with closed graph, we show that the map $F$ is Holder metrically subregular and that the following conditions are equivalent: (i) $F$ is an open map from its domain into its range and the range of $F$ is locally closed; (ii) the map $F$ is … Read more