Analysis of Limited-Memory BFGS on a Class of Nonsmooth Convex Functions

The limited memory BFGS (L-BFGS) method is widely used for large-scale unconstrained optimization, but its behavior on nonsmooth problems has received little attention. L-BFGS can be used with or without “scaling”; the use of scaling is normally recommended. A simple special case, when just one BFGS update is stored and used at every iteration, is … Read more

The primal-dual hybrid gradient method reduces to a primal method for linearly constrained optimization problems

In this work, we show that for linearly constrained optimization problems the primal-dual hybrid gradient algorithm, analyzed by Chambolle and Pock [3], can be written as an entirely primal algorithm. This allows us to prove convergence of the iterates even in the degenerate cases when the linear system is inconsistent or when the strong duality … Read more

Bilevel optimization: theory, algorithms and applications

Bilevel optimization problems are hierarchical optimization problems where the feasible region of the so-called upper level problem is restricted by the graph of the solution set mapping of the lower level problem. Aim of this article is to collect a large number of references on this topic, to show the diversity of contributions and to … Read more

On the Linear Convergence of Difference-of-convex Algorithms for Nonsmooth DC Programming

In this paper we consider the linear convergence of algorithms for minimizing difference- of-convex functions with convex constraints. We allow nonsmoothness in both of the convex and concave components in the objective function, with a finite max structure in the concave compo- nent. Our focus is on algorithms that compute (weak and standard) d(irectional)-stationary points … Read more

Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization

Block-coordinate descent (BCD) is a popular framework for large-scale regularized optimization problems with block-separable structure. Existing methods have several limitations. They often assume that subproblems can be solved exactly at each iteration, which in practical terms usually restricts the quadratic term in the subproblem to be diagonal, thus losing most of the benefits of higher-order … Read more

The Standard Pessimistic Bilevel Problem

Pessimistic bilevel optimization problems, as optimistic ones, possess a structure involving three interrelated optimization problems. Moreover, their finite infima are only attained under strong conditions. We address these difficulties within a framework of moderate assumptions and a perturbation approach which allow us to approximate such finite infima arbitrarily well by minimal values of a sequence … Read more

A sparse optimization approach for energy-efficient timetabling in metro railway systems

In this paper we propose a sparse optimization approach to maximize the utilization of regenerative energy produced by baking trains for energy-efficient timetabling in metro railway systems. By introducing the cardinality function and the square of the Euclidean norm function as the objective function, the resulting sparse optimization model can characterize the utilization of the … Read more

A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem

The plain Newton-min algorithm for solving the linear complementarity problem (LCP) 0 ≤ x ⊥ (Mx+q) ≥ 0 can be viewed as an instance of the plain semismooth Newton method on the equational version min(x,Mx+q) = 0 of the problem. This algorithm converges for any q when M is an M-matrix, but not when it … Read more

A proximal minimization algorithm for structured nonconvex and nonsmooth problems

We propose a proximal algorithm for minimizing objective functions consisting of three summands: the composition of a nonsmooth function with a linear operator, another nonsmooth function, each of the nonsmooth summands depending on an independent block variable, and a smooth function which couples the two block variables. The algorithm is a full splitting method, which … Read more

Stochastic subgradient method converges on tame functions

This work considers the question: what convergence guarantees does the stochastic subgradient method have in the absence of smoothness and convexity? We prove that the stochastic subgradient method, on any semialgebraic locally Lipschitz function, produces limit points that are all first-order stationary. More generally, our result applies to any function with a Whitney stratifiable graph. … Read more