Weakly convex Douglas-Rachford splitting avoids strict saddle points

We prove that the Douglas-Rachford splitting method converges, almost surely, to local minimizers of semialgebraic weakly convex optimization problems, under the assumption of the strict saddle property. The approach consists of two steps: first, we prove a manifold identification result, and local smoothness of the involved iteration operator. Then, we proceed to show that strict … Read more

Weak convexity and approximate subdifferentials

We explore and construct an enlarged subdifferential for weakly convex functions. The resulting object turns out to be continuous with respect to both the function argument and the enlargement parameter. We carefully analyze connections with other constructs in the literature and particularize to the weakly convex setting well-known variational principles. By resorting to the new … Read more

An Inexact Restoration Direct Multisearch Filter Approach to Multiobjective Constrained Derivative-free Optimization

Direct Multisearch (DMS) is a well-established class of methods for multiobjective derivative-free optimization, where constraints are addressed by an extreme barrier approach, only evaluating feasible points. In this work, we propose a filter approach, combined with an inexact feasibility restoration step, to address constraints in the DMS framework. The filter approach treats feasibility as an … Read more

Solving separable convex optimization problems: Faster prediction-correction framework

He and Yuan’s prediction-correction framework [SIAM J. Numer. Anal. 50: 700-709, 2012] is able to provide convergent algorithms for solving separable convex optimization problems at a rate of $O(1/t)$ ($t$ represents iteration times) in both ergodic (the average of iteration) and pointwise senses. This paper presents a faster prediction-correction framework at a rate of $O(1/t)$ … Read more

Convergence Rate of Projected Subgradient Method with Time-varying Step-sizes

We establish the optimal ergodic convergence rate for the classical projected subgradient method with time-varying step-sizes. This convergence rate remains the same even if we slightly increase the weight of the most recent points, thereby relaxing the ergodic sense. ArticleDownload View PDF

Convergence of the Chambolle–Pock Algorithm in the Absence of Monotonicity

The Chambolle-Pock algorithm (CPA), also known as the primal-dual hybrid gradient method (PDHG), has surged in popularity in the last decade due to its success in solving convex/monotone structured problems. This work provides convergence results for problems with varying degrees of (non)monotonicity, quantified through a so-called oblique weak Minty condition on the associated primal-dual operator. … Read more

Singular value half thresholding algorithm for lp regularized matrix optimization problems

In this paper, we study the low-rank matrix optimization problem, where the penalty term is the $\ell_p~(0<p<1)$ regularization. Inspired by the good performance of half thresholding function in sparse/low-rank recovery problems, we propose a singular value half thresholding (SVHT) algorithm to solve the $\ell_p$ regularized matrix optimization problem. The main iteration in SVHT algorithm makes … Read more

Local Convergence Analysis of an Inexact Trust-Region Method for Nonsmooth Optimization

In [R. J. Baraldi and D. P. Kouri, Mathematical Programming, (2022), pp. 1–40], we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated … Read more

Efficient Proximal Subproblem Solvers for a Nonsmooth Trust-Region Method

In [R. J. Baraldi and D. P. Kouri, Mathematical Programming, (2022), pp. 1-40], we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex and nonsmooth convex function. The principle expense of this method is in computing a trial iterate that satisfies the so-called fraction of Cauchy decrease condition—a bound that ensures … Read more

Fixed point continuation algorithm with extrapolation for Schatten p-quasi-norm regularized matrix optimization problems

In this paper, we consider a general low-rank matrix optimization problem which is modeled by a general Schatten p-quasi-norm (${\rm 0<p<1}$) regularized matrix optimization. For this nonconvex nonsmooth and non-Lipschitz matrix optimization problem, based on the matrix p-thresholding operator, we first propose a fixed point continuation algorithm with extrapolation (FPCAe) for solving it. Secondly, we … Read more