Sparse optimization with least-squares constraints

The use of convex optimization for the recovery of sparse signals from incomplete or compressed data is now common practice. Motivated by the success of basis pursuit in recovering sparse vectors, new formulations have been proposed that take advantage of different types of sparsity. In this paper we propose an efficient algorithm for solving a … Read more

A Fast Algorithm for Total Variation Image Reconstruction from Random Projections

Total variation (TV) regularization is popular in image restoration and reconstruction due to its ability to preserve image edges. To date, most research activities on TV models concentrate on image restoration from blurry and noisy observations, while discussions on image reconstruction from random projections are relatively fewer. In this paper, we propose, analyze, and test … Read more

A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization

We consider optimization problems with objective and constraint functions that may be nonconvex and nonsmooth. Problems of this type arise in important applications, many having solutions at points of nondifferentiability of the problem functions. We present a line search algorithm for situations when the objective and constraint functions are locally Lipschitz and continuously differentiable on … Read more

Alternating Direction Algorithms for $\ell_1hBcProblems in Compressive Sensing

In this paper, we propose and study the use of alternating direction algorithms for several $\ell_1$-norm minimization problems arising from sparse solution recovery in compressive sensing, including the basis pursuit problem, the basis-pursuit denoising problems of both unconstrained and constrained forms, as well as others. We present and investigate two classes of algorithms derived from … Read more

A Proximal Algorithm with Quasi Distance. Application to Habit’s Formation

We consider a proximal algorithm with quasi distance applied to nonconvex and nonsmooth functions involving analytic properties for an unconstrained minimization problem. We show the behavioral importance of this proximal point model for habit’s formation in Decision and Making Sciences. ArticleDownload View PDF

Identifying Active Manifolds in Regularization Problems

In this work we consider the problem $\min_x \{ f(x) + P(x) \}$, where $f$ is $\mathcal{C}^2$ and $P$ is nonsmooth, but contains an underlying smooth substructure. Specifically, we assume the function $P$ is prox-regular partly smooth with respect to a active manifold $\M$. Recent work by Tseng and Yun \cite{tseng-yun-2009}, showed that such a … Read more

Alternating direction algorithms for total variation deconvolution in image reconstruction

Image restoration and reconstruction from blurry and noisy observation is known to be ill-posed. To stabilize the recovery, total variation (TV) regularization was introduced by Rudin, Osher and Fatemi in \cite{LIR92}, which has demonstrated superiority in preserving image edges. However, the nondifferentiability of TV makes the underlying optimization problems difficult to solve. In this paper, … Read more

Smoothing techniques for solving semidefinite programs with many constraints

We use smoothing techniques to solve approximately mildly structured semidefinite programs with many constraints. As smoothing techniques require a specific problem format, we introduce an alternative problem formulation that fulfills the structural assumptions. The resulting algorithm has a complexity that depends linearly both on the number of constraints and on the inverse of the accuracy. … Read more

Necessary Optimality Conditions for two-stage Stochastic Programs with Equilibrium Constraints

Developing first order optimality conditions for a two-stage stochastic mathematical program with equilibrium constraints (SMPEC) whose second stage problem has multiple equilibria/solutions is a challenging undone work. In this paper we take this challenge by considering a general class of two-stage whose equilibrium constraints are represented by a parametric variational inequality (where the first stage … Read more

Sparse Signal Reconstruction via Iterative Support Detection

We present a novel sparse signal reconstruction method “ISD”, aiming to achieve fast reconstruction and a reduced requirement on the number of measurements compared to the classical l_1 minimization approach. ISD addresses failed reconstructions of l_1 minimization due to insufficient measurements. It estimates a support set I from a current reconstruction and obtains a new … Read more