NESTA: A Fast and Accurate First-order Method for Sparse Recovery

Accurate signal recovery or image reconstruction from indirect and possibly under- sampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel fi rst-order methods in convex optimization, most notably Nesterov’s smoothing technique, this paper … Read more

A Redistributed Proximal Bundle Method for Nonconvex Optimization

Proximal bundle methods have been shown to be highly successful optimization methods for unconstrained convex problems with discontinuous first derivatives. This naturally leads to the question of whether proximal variants of bundle methods can be extended to a nonconvex setting. This work proposes an approach based on generating cutting-planes models, not of the objective function … Read more

Bundle Methods for Convex Minimization with Partially Inexact Oracles

Recently the proximal bundle method for minimizing a convex function has been extended to an inexact oracle that delivers function and subgradient values of unknown accuracy. We adapt this method to a partially inexact oracle that becomes exact only when an objective target level for a descent step is met. In Lagrangian relaxation, such oracles … Read more

A Fast Algorithm for Sparse Reconstruction based on Shrinkage, Subspace Optimization and Continuation

We propose a fast algorithm for solving the l1-regularized least squares problem for recovering sparse solutions to an undetermined system of linear equations Ax = b. The algorithm is divided into two stages that are performed repeatedly. In the first stage a first-order iterative method called “shrinkage” yields an estimate of the subset of components … Read more

A quasisecant method for minimizing nonsmooth functions

In this paper a new algorithm to locally minimize nonsmooth, nonconvex functions is developed. We introduce the notion of secants and quasisecants for nonsmooth functions. The quasisecants are applied to find descent directions of locally Lipschitz functions. We design a minimization algorithm which uses quasisecants to find descent directions. We prove that this algorithm converges … Read more

Error bounds: necessary and sufficient conditions

The paper presents a general classiffication scheme of necessary and sufficient criteria for the error bound property incorporating the existing conditions. Several derivative-like objects both from the primal as well as from the dual space are used to characterize the error bound property of extended-real-valued functions on a Banach space. Citation Published in Set-Valued and … Read more

A GSS method for oblique l_1 Procrustes problems

We propose a Generating Search Set method for solving the oblique l_1 Procrustes problem. Implementative details, algorithmic choices and theoretical properties of the method are discussed. The results of some numerical experiments are reported. Citation in Applied and Industrial Mathematics in Italy III – Proceedings of the 9th Conference SIMAI, De Bernardis et. Al. (eds), … Read more

Optimality conditions for several type of efficient solutions of set-valued optimization problems

A simple unified framework is presented for the study of strong efficient solutions, weak efficient solutions, positive proper efficient solutions, Henig global proper efficient solutions, Henig proper efficient solutions, super efficient solutions, Benson proper efficient solutions, Hartley proper efficient solutions, Hurwicz proper efficient solutions and Borwein proper efficient solutions of set-valued optimization problem with/or without … Read more

Identifying Activity

Identification of active constraints in constrained optimization is of interest from both practical and theoretical viewpoints, as it holds the promise of reducing an inequality-constrained problem to an equality-constrained problem, in a neighborhood of a solution. We study this issue in the more general setting of composite nonsmooth minimization, in which the objective is a … Read more

Approximate Level Method

In this paper we propose and analyze a variant of the level method [4], which is an algorithm for minimizing nonsmooth convex functions. The main work per iteration is spent on 1) minimizing a piecewise-linear model of the objective function and on 2) projecting onto the intersection of the feasible region and a polyhedron arising … Read more