Error bounds for vector-valued functions: necessary and sufficient conditions

In this paper, we attempt to extend the definition and existing local error bound criteria to vector-valued functions, or more generally, to functions taking values in a normed linear space. Some new derivative-like objects (slopes and subdifferentials) are introduced and a general classification scheme of error bound criteria is presented. CitationPublished in Nonlinear Analysis. Theory, … Read more

Multiobjective DC Programming with Infinite Convex Constraints

In this paper new results are established in multiobjective DC programming with infinite convex constraints ($MOPIC$ for abbr.) that are defined on Banach space (finite or infinite) with objectives given as the difference of convex functions subject to infinite convex constraints. This problem can also be called multiobjective DC semi-infinite and infinite programming, where decision … Read more

Structural optimization of the Ziegler’s pendulum: singularities and exact optimal solutions

Structural optimization of non-conservative systems with respect to stability criteria is a research area with important applications in fluid-structure interactions, friction-induced instabilities, and civil engineering. In contrast to optimization of conservative systems where rigorously proven optimal solutions in buckling problems have been found, for non-conservative optimization problems only numerically optimized designs were reported. The proof … Read more

Inexact Dynamic Bundle Methods

We give a proximal bundle method for minimizing a convex function $f$ over $\mathbb{R}_+^n$. It requires evaluating $f$ and its subgradients with a possibly unknown accuracy $\epsilon\ge0$, and maintains a set of free variables $I$ to simplify its prox subproblems. The method asymptotically finds points that are $\epsilon$-optimal. In Lagrangian relaxation of convex programs, it … Read more

From convergence principles to stability and optimality conditions

We show in a rather general setting that Hoelder and Lipschitz stability properties of solutions to variational problems can be characterized by convergence of more or less abstract iteration schemes. Depending on the principle of convergence, new and intrinsic stability conditions can be derived. Our most abstract models are (multi-) functions on complete metric spaces. … Read more

A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality

The principle underlying this paper is the basic observation that the problem of simultaneously solving a large class of composite monotone inclusions and their duals can be reduced to that of finding a zero of the sum of a maximally monotone operator and a linear skew-adjoint operator. An algorithmic framework is developed for solving this … Read more

Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fi elds. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A … Read more

Penalty Decomposition Methods for Rank Minimization

In this paper we consider general rank minimization problems with rank appearing in either objective function or constraint. We first show that a class of matrix optimization problems can be solved as lower dimensional vector optimization problems. As a consequence, we establish that a class of rank minimization problems have closed form solutions. Using this … Read more

Penalty Decomposition Methods for hBcNorm Minimization

In this paper we consider general l0-norm minimization problems, that is, the problems with l0-norm appearing in either objective function or constraint. In particular, we first reformulate the l0-norm constrained problem as an equivalent rank minimization problem and then apply the penalty decomposition (PD) method proposed in [33] to solve the latter problem. By utilizing … Read more

Approximating Stationary Points of Stochastic Mathematical Programs with Equilibrium Constraints via Sample Averaging

We investigate sample average approximation of a general class of one-stage stochastic mathematical programs with equilibrium constraints. By using graphical convergence of unbounded set-valued mappings, we demonstrate almost sure convergence of a sequence of stationary points of sample average approximation problems to their true counterparts as the sample size increases. In particular we show the … Read more