Sparse Signal Reconstruction via Iterative Support Detection

We present a novel sparse signal reconstruction method “ISD”, aiming to achieve fast reconstruction and a reduced requirement on the number of measurements compared to the classical l_1 minimization approach. ISD addresses failed reconstructions of l_1 minimization due to insufficient measurements. It estimates a support set I from a current reconstruction and obtains a new … Read more

Composite Proximal Bundle Method

We consider minimization of nonsmooth functions which can be represented as the composition of a positively homogeneous convex function and a smooth mapping. This is a sufficiently rich class that includes max-functions, largest eigenvalue functions, and norm-1 regularized functions. The bundle method uses an oracle that is able to compute separately the function and subgradient … Read more

An Augmented Lagrangian Approach for Sparse Principal Component Analysis

Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To … Read more

A First-Order Smoothed Penalty Method for Compressed Sensing

We propose a first-order smoothed penalty algorithm (SPA) to solve the sparse recovery problem min{||x||_1 : Ax=b}. SPA is efficient as long as the matrix-vector product Ax and A^Ty can be computed efficiently; in particular, A need not be an orthogonal projection matrix. SPA converges to the target signal by solving a sequence of penalized … Read more

Approximating semidefinite packing problems

In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding technique for dimension reduction. Our algorithm exploits the structural similarity between semidefinite packing programs … Read more

An Approximate Lagrange Multiplier Rule

In this paper, we show that for a large class of optimization problems, the Lagrange multiplier rule can be derived from the so-called approximate multiplier rule. In establishing the link between the approximate and the exact multiplier rule we first derive an approximate multiplier rule for a very general class of optimization problems using the … Read more

Stochastic Nash Equilibrium Problems: Sample Average Approximation and Applications

This paper presents a Nash equilibrium model where the underlying objective functions involve uncertainty and nonsmoothness. The well known sample average approximation method is applied to solve the problem and the first order equilibrium conditions are characterized in terms of Clarke generalized gradients. Under some moderate conditions, it is shown that with probability one, a … Read more

Continuity of set-valued maps revisited in the light of tame geometry

Continuity of set-valued maps is hereby revisited: after recalling some basic concepts of variational analysis and a short description of the State-of-the-Art, we obtain as by-product two Sard type results concerning local minima of scalar and vector valued functions. Our main result though, is inscribed in the framework of tame geometry, stating that a closed-valued … Read more

NESTA: A Fast and Accurate First-order Method for Sparse Recovery

Accurate signal recovery or image reconstruction from indirect and possibly under- sampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel fi rst-order methods in convex optimization, most notably Nesterov’s smoothing technique, this paper … Read more

A Redistributed Proximal Bundle Method for Nonconvex Optimization

Proximal bundle methods have been shown to be highly successful optimization methods for unconstrained convex problems with discontinuous first derivatives. This naturally leads to the question of whether proximal variants of bundle methods can be extended to a nonconvex setting. This work proposes an approach based on generating cutting-planes models, not of the objective function … Read more