$\varepsilon- Subdifferential of Set-valued Map and Its Application

In this paper, firstly, the concept of $\varepsilon-$strictly efficient subdifferential for set-valued map is introduced in Hausdorff locally convex topological vector spaces. Secondly, a characterization of this subdifferential by scalarization and the generalized $\varepsilon-$ Moreau-Rockafellar type theorem for set-valued maps are established. Finally, the necessary optimality condition of the constraint set-valued optimization problem for $\varepsilon-$ … Read more

Global Convergence of Unmodified 3-Block ADMM for a Class of Convex Minimization Problems

The alternating direction method of multipliers (ADMM) has been successfully applied to solve structured convex optimization problems due to its superior practical performance. The convergence properties of the 2-block ADMM have been studied extensively in the literature. Specifically, it has been proven that the 2-block ADMM globally converges for any penalty parameter $\gamma>0$. In this … Read more

An Inexact Proximal Algorithm for Pseudomonotone and Quasimonotone Variational Inequalities

In this paper we introduce an inexact proximal point algorithm using proximal distances for solving variational inequality problems when the mapping is pseudomonotone or quasimonotone. Under some natural assumptions we prove that the sequence generates by the algorithm is convergent for the pseudomonotone case and weakly convergent for the quasimonotone ones. This approach unifies the … Read more

A New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives

In this paper we analyze boosting algorithms in linear regression from a new perspective: that of modern first-order methods in convex optimization. We show that classic boosting algorithms in linear regression, namely the incremental forward stagewise algorithm (FS-epsilon) and least squares boosting (LS-Boost-epsilon), can be viewed as subgradient descent to minimize the loss function defined … Read more

First-Order Algorithms for Convex Optimization with Nonseparate Objective and Coupled Constraints

In this paper we consider a block-structured convex optimization model, where in the objective the block-variables are nonseparable and they are further linearly coupled in the constraint. For the 2-block case, we propose a number of first-order algorithms to solve this model. First, the alternating direction method of multipliers (ADMM) is extended, assuming that it … Read more

Solving nonsmooth convex optimization with complexity (\eps^{-1/2})$

This paper describes an algorithm for solving structured nonsmooth convex optimization problems using OSGA, a first-order method with the complexity $O(\eps^{-2})$ for Lipschitz continuous nonsmooth problems and $O(\eps^{-1/2})$ for smooth problems with Lipschitz continuous gradient. If the nonsmoothness of the problem is manifested in a structured way, we reformulate the problem in a form that … Read more

Distributionally robust expectation inequalities for structured distributions

Quantifying the risk of unfortunate events occurring, despite limited distributional information, is a basic problem underlying many practical questions. Indeed, quantifying constraint violation probabilities in distributionally robust programming or judging the risk of financial positions can both be seen to involve risk quantification, notwithstanding distributional ambiguity. In this work we discuss worst-case probability and conditional … Read more

First order optimality conditions for mathematical programs with second-order cone complementarity constraints

In this paper we consider a mathematical program with second-order cone complementarity constraints (SOCMPCC). The SOCMPCC generalizes the mathematical program with complementarity constraints (MPCC) in replacing the set of nonnegative reals by a second-order cone. We show that if the SOCMPCC is considered as an optimization problem with convex cone constraints, then Robinson’s constraint qualification … Read more

An O(1/k) Convergence Rate for the Variable Stepsize Bregman Operator Splitting Algorithm

An earlier paper proved the convergence of a variable stepsize Bregman operator splitting algorithm (BOSVS) for minimizing $\phi(Bu)+H(u)$ where $H$ and $\phi$ are convex functions, and $\phi$ is possibly nonsmooth. The algorithm was shown to be relatively efficient when applied to partially parallel magnetic resonance image reconstruction problems. In this paper, the convergence rate of … Read more

Some Applications of Polynomial Optimization in Operations Research and Real-Time Decision Making

We demonstrate applications of algebraic techniques that optimize and certify polynomial inequalities to problems of interest in the operations research and transportation engineering communities. Three problems are considered: (i) wireless coverage of targeted geographical regions with guaranteed signal quality and minimum transmission power, (ii) computing real-time certificates of collision avoidance for a simple model of … Read more