A first-order primal-dual algorithm for convex problems with applications to imaging

In this paper we study a first-order primal-dual algorithm for convex optimization problems with known saddle-point structure. We prove convergence to a saddle-point with rate O(1/N ) in finite dimensions, which is optimal for the complete class of non-smooth problems we are considering in this paper. We further show accelerations of the proposed algorithm to … Read more

Proximal alternating direction-based contraction methods for separable linearly constrained convex optimization

Alternating direction method (ADM) has been well studied in the context of linearly constrained convex programming problems. Recently, because of its significant efficiency and easy implementation in novel applications, ADM is extended to the case where the number of separable parts is a finite number. The algorithmic framework of the extended method consists of two … Read more

A Unified Approach for Minimizing Composite Norms

We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization problem min |sigma(F(X)-G)|_alpha + |C(X)- d|_beta subject to A(X)-b in Q; where sigma(X) denotes the vector of singular values of X, the matrix norm |sigma(X)|_alpha denotes either the Frobenius, the nuclear, or the L2-operator norm of X, the vector norm |.|_beta … Read more

L1 Minimization via Randomized First Order Algorithms

In this paper we propose randomized first-order algorithms for solving bilinear saddle points problems. Our developments are motivated by the need for sublinear time algorithms to solve large-scale parametric bilinear saddle point problems where cheap online assessment of solution quality is crucial. We present the theoretical efficiency estimates of our algorithms and discuss a number … Read more

Information Geometry and Primal-Dual Interior-point Algorithms

In this paper, we study polynomial-time interior-point algorithms in view of information geometry. We introduce an information geometric structure for a conic linear program based on a self-concordant barrier function. Riemannian metric is defined with the Hessian of the barrier function. We introduce two connections $\nabla$ and $\nabla^*$ which roughly corresponds to the primal and … Read more

Generic nondegeneracy in convex optimization

We show that minimizers of convex functions subject to almost all linear perturbations are nondegenerate. An analogous result holds more generally, for lower-C^2 functions. CitationCornell University, School of Operations Research and Information Engineering, 206 Rhodes Hall Cornell University Ithaca, NY 14853. May 2010. ArticleDownload View PDF

On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming

In this paper, we analyze two popular semidefinite programming \SDPb relaxations for quadratically constrained quadratic programs \QCQPb with matrix variables. These are based on \emph{vector-lifting} and on \emph{matrix lifting} and are of different size and expense. We prove, under mild assumptions, that these two relaxations provide equivalent bounds. Thus, our results provide a theoretical guideline … Read more

Convexity Conditions and the Legendre-Fenchel Transform for the Product of Finitely Many Positive Definite Quadratic Forms

While the product of finitely many convex functions has been investigated in the field of global optimization, some fundamental issues such as the convexity condition and the Legendre-Fenchel transform for the product function remain unresolved. Focusing on quadratic forms, this paper is aimed at addressing the question: \emph{When is the product of finitely many positive … Read more

Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization

We consider regularized stochastic learning and online optimization problems, where the objective function is the sum of two convex terms: one is the loss function of the learning task, and the other is a simple regularization term such as $\ell_1$-norm for promoting sparsity. We develop extensions of Nesterov’s dual averaging method, that can exploit the … Read more