Exact duality for optimization over symmetric cones

We present a strong duality theory for optimization problems over symmetric cones without assuming any constraint qualification. We show important complexity implications of the result to semidefinite and second order conic optimization. The result is an application of Borwein and Wolkowicz’s facial reduction procedure to express the minimal cone. We use Pataki’s simplified analysis and … Read more

A secant method for nonsmooth optimization

The notion of a secant for locally Lipschitz continuous functions is introduced and a new algorithm to locally minimize nonsmooth, nonconvex functions based on secants is developed. We demonestrate that the secants can be used to design an algorithm to find descent directions of locally Lipschitz continuous functions. This algorithm is applied to design a … Read more

A polynomial-time interior-point method for conic optimization, with inexact barrier evaluations

In this work we develop a primal-dual short-step interior point method for conic convex optimization problems for which exact evaluation of the gradient and Hessian of the barrier function is either impossible or too expensive. As our main contribution, we show that if approximate gradients and Hessians can be computed, and the relative errors in … Read more

Another Face of DIRECT

It is shown that, contrary to a claim of [D. E. Finkel, and C. T. Kelley, Additive scaling and the DIRECT algorithm, J. Glob. Optim. 36 (2006) 597-608], it is possible to divide the smallest hypercube which contains the low function value by considering hyperrectangles whose points are located on the diagonal of the center … Read more

The Exact Feasibility of Randomized Solutions of Robust Convex Programs

Robust optimization programs are hard to solve even when the constraints are convex. In previous contributions, it has been shown that approximately robust solutions (i.e. solutions feasible for all constraints but a small fraction of them) to convex programs can be obtained at low computational cost through constraints randomization. In this paper, we establish new … Read more

Hybrid extragradient proximal algorithm coupled with parametric approximation and penalty/barrier methods

In this paper we study the hybrid extragradient method coupled with approximation and penalty schemes for minimization problems. Under certain hypotheses, that include for example the case of Tikhonov regularization, we prove convergence of the method to the solution set of our minimization problem. When we use schemes of penalization or barrier we can show … Read more

A Fast Algorithm For Image Deblurring with Total Variation Regularization

We propose and test a simple algorithmic framework for recovering images from blurry and noisy observations based on total variation (TV) regularization when a blurring point-spread function is given. Using a splitting technique, we construct an iterative procedure of alternately solving a pair of easy subproblems associated with an increasing sequence of penalty parameter values. … Read more

A Fixed-Point Continuation Method for l_1-Regularized Minimization with Applications to Compressed Sensing

We consider solving minimization problems with $\ell_1$-regularization: $$\min \|x\|_1 + \mu f(x),$$ particularly for $f(x) = \frac{1}{2}\|Ax-b\|_M^2$ where $A \in \R^{m \times n}$ with $m < n$. Our goal is to construct efficient and robust algorithms for solving large-scale problems with dense data, and our approach is based on two powerful algorithmic ideas, operator-splitting and ... Read more

A gradient-based approach for computing Nash equilibria of large sequential games

We propose a new gradient based scheme to approximate Nash equilibria of large sequential two-player, zero-sum games. The algorithm uses modern smoothing techniques for saddle-point problems tailored specifically for the polytopes used in the Nash equilibrium problem. CitationWorking Paper, Tepper School of Business, Carnegie Mellon UniversityArticleDownload View PDF

Smooth Optimization Approach for Covariance Selection

In this paper we study a smooth optimization approach for solving a class of non-smooth {\it strongly} concave maximization problems. In particular, we apply Nesterov’s smooth optimization technique \cite{Nest83-1,Nest05-1} to their dual counterparts that are smooth convex problems. It is shown that the resulting approach has $\cO(1/{\sqrt{\epsilon}})$ iteration complexity for finding an $\epsilon$-optimal solution to … Read more