Dido’s Problem and Pareto Optimality

Under study is the new class of geometrical extremal problems in which it is required to achieve the best result in the presence of conflicting goals; e.g., given the surface area of a convex body~$\mathfrak x$, we try to maximize the volume of~$\mathfrak x$ and minimize the width of~$\mathfrak x$ simultaneously. These problems are addressed … Read more

Error bounds: necessary and sufficient conditions

The paper presents a general classiffication scheme of necessary and sufficient criteria for the error bound property incorporating the existing conditions. Several derivative-like objects both from the primal as well as from the dual space are used to characterize the error bound property of extended-real-valued functions on a Banach space. CitationPublished in Set-Valued and Variational … Read more

A GSS method for oblique l_1 Procrustes problems

We propose a Generating Search Set method for solving the oblique l_1 Procrustes problem. Implementative details, algorithmic choices and theoretical properties of the method are discussed. The results of some numerical experiments are reported. Citationin Applied and Industrial Mathematics in Italy III – Proceedings of the 9th Conference SIMAI, De Bernardis et. Al. (eds), Series … Read more

Improved algorithms for convex minimization in relative scale

In this paper we propose two modifications to Nesterov’s algorithms for minimizing convex functions in relative scale. The first is based on a bisection technique and leads to improved theoretical iteration complexity, and the second is a heuristic for avoiding restarting behavior. The fastest of our algorithms produces a solution within relative error O(1/k) of … Read more

Equivalence of Convex Problem Geometry and Computational Complexity in the Separation Oracle Model

Consider the following supposedly-simple problem: “compute x \in S” where S is a convex set conveyed by a separation oracle, with no further information (e.g., no bounding ball containing or intersecting S, etc.). Our interest in this problem stems from fundamental issues involving the interplay of computational complexity, the geometry of S, and the stability … Read more

An interior-point Lagrangian decomposition method for separable convex optimization

In this paper we propose a distributed algorithm for solving large-scale separable convex problems using Lagrangian dual decomposition and the interior-point framework. By adding self-concordant barrier terms to the ordinary Lagrangian we prove under mild assumptions that the corresponding family of augmented dual functions is self-concordant. This makes it possible to efficiently use the Newton … Read more

Application of a smoothing technique to decomposition in convex optimization

Dual decomposition is a powerful technique for deriving decomposition schemes for convex optimization problems with specific structure. Although the Augmented Lagrangian is computationally more stable than the ordinary Lagrangian, the \textit{prox-term} destroys the separability of the given problem. In this paper we use another approach to obtain a smooth Lagrangian, based on a smoothing technique … Read more

Risk averse feasible policies for large-scale multistage stochastic linear programs

We consider risk-averse formulations of stochastic linear programs having a structure that is common in real-life applications. Specifically, the optimization problem corresponds to controlling over a certain horizon a system whose dynamics is given by a transition equation depending affinely on an interstage dependent stochastic process. We put in place a rolling-horizon time consistent policy. … Read more

Nuclear norm minimization for the planted clique and biclique problems

We consider the problems of finding a maximum clique in a graph and finding a maximum-edge biclique in a bipartite graph. Both problems are NP-hard. We write both problems as matrix-rank minimization and then relax them using the nuclear norm. This technique, which may be regarded as a generalization of compressive sensing, has recently been … Read more

Generic identifiability and second-order sufficiency in tame convex optimization

We consider linear optimization over a fixed compact convex feasible region that is semi-algebraic (or, more generally, “tame”). Generically, we prove that the optimal solution is unique and lies on a unique manifold, around which the feasible region is “partly smooth”, ensuring finite identification of the manifold by many optimization algorithms. Furthermore, second-order optimality conditions … Read more