Nuclear norm minimization for the planted clique and biclique problems

We consider the problems of finding a maximum clique in a graph and finding a maximum-edge biclique in a bipartite graph. Both problems are NP-hard. We write both problems as matrix-rank minimization and then relax them using the nuclear norm. This technique, which may be regarded as a generalization of compressive sensing, has recently been … Read more

Generic identifiability and second-order sufficiency in tame convex optimization

We consider linear optimization over a fixed compact convex feasible region that is semi-algebraic (or, more generally, “tame”). Generically, we prove that the optimal solution is unique and lies on a unique manifold, around which the feasible region is “partly smooth”, ensuring finite identification of the manifold by many optimization algorithms. Furthermore, second-order optimality conditions … Read more

Optimality conditions for several type of efficient solutions of set-valued optimization problems

A simple unified framework is presented for the study of strong efficient solutions, weak efficient solutions, positive proper efficient solutions, Henig global proper efficient solutions, Henig proper efficient solutions, super efficient solutions, Benson proper efficient solutions, Hartley proper efficient solutions, Hurwicz proper efficient solutions and Borwein proper efficient solutions of set-valued optimization problem with/or without … Read more

Identifying Activity

Identification of active constraints in constrained optimization is of interest from both practical and theoretical viewpoints, as it holds the promise of reducing an inequality-constrained problem to an equality-constrained problem, in a neighborhood of a solution. We study this issue in the more general setting of composite nonsmooth minimization, in which the objective is a … Read more

Fejer processes with diminishing disturbances and decomposition of constrained nondifferentiable optimization problems

Iterative processes based on Fejer mappings with diminishing problem-specific shifts in the arguments are considered. Such structure allows fine-tuning of Fejer processes by directing them toward selected subsets of attracting sets. Use of various Fejer operators provides ample opportunities for decomposition and parallel computations. Subgradient projection algorithms with sequential and simultaneous projections on segmented constraints … Read more

Simultaneously solving seven optimization problems in relative scale

In this paper we develop and analyze an efficient algorithm which solves seven related optimization problems simultaneously, in relative scale. Each iteration of our method is very cheap, with main work spent on matrix-vector multiplication. We prove that if a certain sequence generated by the algorithm remains bounded, then the method must terminate in $O(1/\delta)$ … Read more

Approximate Level Method

In this paper we propose and analyze a variant of the level method [4], which is an algorithm for minimizing nonsmooth convex functions. The main work per iteration is spent on 1) minimizing a piecewise-linear model of the objective function and on 2) projecting onto the intersection of the feasible region and a polyhedron arising … Read more

THE EKELAND VARIATIONAL PRINCIPLE FOR HENIG PROPER MINIMIZERS AND SUPER MINIMIZERS

In this paper we consider, for the first time, approximate Henig proper minimizers and approximate super minimizers of a set-valued map F with values in a partially ordered vector space and formulate two versions of the Ekeland variational principle for these points involving coderivatives in the senses of Ioffe, Clarke and Mordukhovich. As applications we … Read more

Nonsmooth Optimization via BFGS

We investigate the BFGS algorithm with an inexact line search when applied to nonsmooth functions, not necessarily convex. We define a suitable line search and show that it generates a sequence of nested intervals containing points satisfying the Armijo and weak Wolfe conditions, assuming only absolute continuity. We also prove that the line search terminates … Read more

Behavior of BFGS with an Exact Line Search on Nonsmooth Examples

We investigate the behavior of the BFGS algorithm with an exact line search on nonsmooth functions. We show that it may fail on a simple polyhedral example, but that it apparently always succeeds on the Euclidean norm function, spiraling into the origin with a Q-linear rate of convergence; we prove this in the case of … Read more