Optimal steepest descent algorithms for unconstrained convex problems: fine tuning Nesterov’s method

We modify the first order algorithm for convex programming proposed by Nesterov. The resulting algorithm keeps the optimal complexity obtained by Nesterov with no need of a known Lipschitz constant for the gradient, and performs better in practically all examples in a set of test problems. CitationTechnical Report, Federal University of Santa Catarina, 2008.ArticleDownload View … Read more

Strong Duality and Minimal Representations for Cone Optimization

The elegant results for strong duality and strict complementarity for linear programming, \LP, can fail for cone programming over nonpolyhedral cones. One can have: unattained optimal values; nonzero duality gaps; and no primal-dual optimal pair that satisfies strict complementarity. This failure is tied to the nonclosure of sums of nonpolyhedral closed cones. We take a … Read more

Efficient Methods for Stochastic Composite Optimization

This paper considers an important class of convex programming problems whose objective function $\Psi$ is given by the summation of a smooth and non-smooth component. Further, it is assumed that the only information available for the numerical scheme to solve these problems is the subgradient of $\Psi$ contaminated by stochastic noise. Our contribution mainly consists … Read more

On the String Averaging Method for Sparse Common Fixed Points Problems

We study the common fixed points problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We propose a definition of sparseness of a family of operators and investigate a string-averaging algorithmic scheme that favorably handles the common fixed points problem when … Read more

On Theory of Compressive Sensing via L1-Minimization:

Compressive (or compressed) sensing (CS) is an emerging methodology in computational signal processing that has recently attracted intensive research activities. At present, the basic CS theory includes recoverability and stability: the former quantifies the central fact that a sparse signal of length n can be exactly recovered from much less than n measurements via L1-minimization … Read more

Full Nesterov-Todd Step Primal-Dual Interior-Point Methods for Second-Order Cone Optimization

After a brief introduction to Jordan algebras, we present a primal-dual interior-point algorithm for second-order conic optimization that uses full Nesterov-Todd-steps; no line searches are required. The number of iterations of the algorithm is $O(\sqrt{N}\log ({N}/{\varepsilon})$, where $N$ stands for the number of second-order cones in the problem formulation and $\varepsilon$ is the desired accuracy. … Read more

Iteration-complexity of first-order penalty methods

This paper considers a special but broad class of convex programing (CP) problems whose feasible region is a simple compact convex set intersected with the inverse image of a closed convex cone under an affine transformation. We study two first-order penalty methods for solving the above class of problems, namely: the quadratic penalty method and … Read more

On Non-Convex Quadratic Programming with Box Constraints

Non-Convex Quadratic Programming with Box Constraints is a fundamental NP-hard global optimisation problem. Recently, some authors have studied a certain family of convex sets associated with this problem. We prove several fundamental results concerned with these convex sets: we determine their dimension, characterise their extreme points and vertices, show their invariance under certain affine transformations, … Read more

Convexity in semi-algebraic geometry and polynomial optimization

We review several (and provide new) results on the theory of moments, sums of squares and basic semi-algebraic sets when convexity is present. In particular, we show that under convexity, the hierarchy of semidefinite relaxations for polynomial optimization simplifies and has finite convergence, a highly desirable feature as convex problems are in principle easier to … Read more