Chance-constrained optimization via randomization: feasibility and optimality

In this paper we study the link between a semi-infinite chance-constrained optimization problem and its randomized version, i.e. the problem obtained by sampling a finite number of its constraints. Extending previous results on the feasibility of randomized convex programs, we establish here the feasibility of the solution obtained after the elimination of a portion of … Read more

On Verifiable Sufficient Conditions for Sparse Signal Recovery via L1 Minimization

We propose novel necessary and sufficient conditions for a sensing matrix to be “s-good” — to allow for exact L1-recovery of sparse signals with s nonzero entries when no measurement noise is present. Then we express the error bounds for imperfect L1-recovery (nonzero measurement noise, nearly s-sparse signal, near-optimal solution of the optimization problem yielding … Read more

Impulsive Optimal Control of Hybrid Finite-Dimensional Lagrangian Systems

The scope of this dissertation addresses numerical and theoretical issues in the impulsive control of hybrid finite-dimensional Lagrangian systems. In order to treat these aspects, a modeling framework is presented based on the measure-differential inclusion representation of the Lagrangian dynamics. The main advantage of this representation is that it enables the incorporation of set-valued force … Read more

Gradient based method for cone programming with application to large-scale compressed sensing

In this paper, we study a gradient based method for general cone programming (CP) problems. In particular, we first consider four natural primal-dual convex smooth minimization reformulations for them, and then discuss a variant of Nesterov’s smooth (VNS) method recently proposed by Tseng [30] for solving these reformulations. The associated worst-case major arithmetic operations costs … Read more

Necessary Conditions for the Impulsive Optimal Control of Multibody Mechanical Systems

In this work, necessary conditions for the impulsive optimal control of multibody mechanical systems are stated. The conditions are obtained by the application subdifferential calculus techniques to extended-valued lower semi-continuous generalized Bolza functional that is evaluated on multiple intervals. Contrary to the approach in literature so far, the instant of possibly impulsive transition is considered … Read more

Dynamic Subgradient Methods

Lagrangian relaxation is commonly used to generate bounds for mixed-integer linear programming problems. However, when the number of dualized constraints is very large (exponential in the dimension of the primal problem), explicit dualization is no longer possible. In order to reduce the dual dimension, different heuristics were proposed. They involve a separation procedure to dynamically … Read more

Identification and Elimination of Interior Points for the Minimum Enclosing Ball Problem

Given $\cA := \{a^1,\ldots,a^m\} \subset \R^n$, we consider the problem of reducing the input set for the computation of the minimum enclosing ball of $\cA$. In this note, given an approximate solution to the minimum enclosing ball problem, we propose a simple procedure to identify and eliminate points in $\cA$ that are guaranteed to lie … Read more

An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise

We extend a recently proposed alternating minimization algorithm to the case of recovering blurry multichannel (color) images corrupted by impulsive rather than Gaussian noise. The algorithm minimizes the sum of a multichannel extension of total variation (TV), either isotropic or anisotropic, and a data fidelity term measured in the L1-norm. We derive the algorithm by … Read more

Optimal steepest descent algorithms for unconstrained convex problems: fine tuning Nesterov’s method

We modify the first order algorithm for convex programming proposed by Nesterov. The resulting algorithm keeps the optimal complexity obtained by Nesterov with no need of a known Lipschitz constant for the gradient, and performs better in practically all examples in a set of test problems. CitationTechnical Report, Federal University of Santa Catarina, 2008.ArticleDownload View … Read more

Strong Duality and Minimal Representations for Cone Optimization

The elegant results for strong duality and strict complementarity for linear programming, \LP, can fail for cone programming over nonpolyhedral cones. One can have: unattained optimal values; nonzero duality gaps; and no primal-dual optimal pair that satisfies strict complementarity. This failure is tied to the nonclosure of sums of nonpolyhedral closed cones. We take a … Read more