Efficient Methods for Stochastic Composite Optimization

This paper considers an important class of convex programming problems whose objective function $\Psi$ is given by the summation of a smooth and non-smooth component. Further, it is assumed that the only information available for the numerical scheme to solve these problems is the subgradient of $\Psi$ contaminated by stochastic noise. Our contribution mainly consists … Read more

On the String Averaging Method for Sparse Common Fixed Points Problems

We study the common fixed points problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We propose a definition of sparseness of a family of operators and investigate a string-averaging algorithmic scheme that favorably handles the common fixed points problem when … Read more

On Theory of Compressive Sensing via L1-Minimization:

Compressive (or compressed) sensing (CS) is an emerging methodology in computational signal processing that has recently attracted intensive research activities. At present, the basic CS theory includes recoverability and stability: the former quantifies the central fact that a sparse signal of length n can be exactly recovered from much less than n measurements via L1-minimization … Read more

Full Nesterov-Todd Step Primal-Dual Interior-Point Methods for Second-Order Cone Optimization

After a brief introduction to Jordan algebras, we present a primal-dual interior-point algorithm for second-order conic optimization that uses full Nesterov-Todd-steps; no line searches are required. The number of iterations of the algorithm is $O(\sqrt{N}\log ({N}/{\varepsilon})$, where $N$ stands for the number of second-order cones in the problem formulation and $\varepsilon$ is the desired accuracy. … Read more

Iteration-complexity of first-order penalty methods

This paper considers a special but broad class of convex programing (CP) problems whose feasible region is a simple compact convex set intersected with the inverse image of a closed convex cone under an affine transformation. We study two first-order penalty methods for solving the above class of problems, namely: the quadratic penalty method and … Read more

On Non-Convex Quadratic Programming with Box Constraints

Non-Convex Quadratic Programming with Box Constraints is a fundamental NP-hard global optimisation problem. Recently, some authors have studied a certain family of convex sets associated with this problem. We prove several fundamental results concerned with these convex sets: we determine their dimension, characterise their extreme points and vertices, show their invariance under certain affine transformations, … Read more

Convexity in semi-algebraic geometry and polynomial optimization

We review several (and provide new) results on the theory of moments, sums of squares and basic semi-algebraic sets when convexity is present. In particular, we show that under convexity, the hierarchy of semidefinite relaxations for polynomial optimization simplifies and has finite convergence, a highly desirable feature as convex problems are in principle easier to … Read more

Calibrating Least Squares Covariance Matrix Problems with Equality and Inequality Constraints

In many applications in statistics, finance, and insurance/reinsurance, one seeks a solution of finding a covariance matrix satisfying a large number of given linear equality and inequality constraints in a way that it deviates the least from a given symmetric matrix. The difficulty in finding an efficient method for solving this problem is due to … Read more

T-algebras and linear optimization over symmetric cones

Euclidean Jordan-algebra is a commonly used tool in designing interior point algorithms for symmetric cone programs. T-algebra, on the other hand, has rarely been used in symmetric cone programming. In this paper, we use both algebraic characterizations of symmetric cones to extend the target-following framework of linear programming to symmetric cone programming. Within this framework, … Read more